Loading…

Improving Bottom-up Saliency Detection by Looking into Neighbors

Bottom-up saliency detection aims to detect salient areas within natural images usually without learning from labeled images. Typically, the saliency map of an image is inferred by only using the information within this image (referred to as the "current image"). While efficient, such sing...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on circuits and systems for video technology 2013-06, Vol.23 (6), p.1016-1028
Main Authors: Lang, Congyan, Feng, Jiashi, Liu, Guangcan, Tang, Jinhui, Yan, Shuicheng, Luo, Jiebo
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Bottom-up saliency detection aims to detect salient areas within natural images usually without learning from labeled images. Typically, the saliency map of an image is inferred by only using the information within this image (referred to as the "current image"). While efficient, such single-image-based methods may fail to obtain reliable results, because the information within a single image may be insufficient for defining saliency. In this paper, we investigate how saliency detection can benefit from the nearest neighbor structure in the image space. First, we show that existing methods can be improved by extending them to include the visual neighborhood information. This verifies the significance of the neighbors. Next, a solution of multitask sparsity pursuit is proposed to integrate the current image and its neighbors to collaboratively detect saliency. The integration is done by first representing each image as a feature matrix, and then seeking the consistently sparse elements from the joint decompositions of multiple matrices into pairs of low-rank and sparse matrices. The computational procedure is formulated as a constrained nuclear norm and â„“ 2,1 -norm minimization problem, which is convex and can be solved efficiently with the augmented Lagrange multiplier method. Besides the nearest neighbor structure in the visual feature space, the proposed model can also be generalized to handle multiple visual features. Extensive experiments have clearly validated its superiority over other state-of-the-art methods.
ISSN:1051-8215
1558-2205
DOI:10.1109/TCSVT.2013.2248495