Loading…

Supervised Spatio-Temporal Neighborhood Topology Learning for Action Recognition

Supervised manifold learning has been successfully applied to action recognition, in which class label information could improve the recognition performance. However, the learned manifold may not be able to well preserve both the local structure and global constraint of temporal labels in action seq...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on circuits and systems for video technology 2013-08, Vol.23 (8), p.1447-1460
Main Authors: Ma, Andy J., Yuen, Pong C., Zou, Wilman W. W., Jian-Huang Lai
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c297t-cc3ed42216f566714ea9e3f4f42aeb9689da90c0e2dd5b81a892e435ebb89c0e3
cites cdi_FETCH-LOGICAL-c297t-cc3ed42216f566714ea9e3f4f42aeb9689da90c0e2dd5b81a892e435ebb89c0e3
container_end_page 1460
container_issue 8
container_start_page 1447
container_title IEEE transactions on circuits and systems for video technology
container_volume 23
creator Ma, Andy J.
Yuen, Pong C.
Zou, Wilman W. W.
Jian-Huang Lai
description Supervised manifold learning has been successfully applied to action recognition, in which class label information could improve the recognition performance. However, the learned manifold may not be able to well preserve both the local structure and global constraint of temporal labels in action sequences. To overcome this problem, this paper proposes a new supervised manifold learning algorithm called supervised spatio-temporal neighborhood topology learning (SSTNTL) for action recognition. By analyzing the topological characteristics in the context of action recognition, we propose to construct the neighborhood topology using both supervised spatial and temporal pose correspondence information. Employing the property in locality preserving projection (LPP), SSTNTL solves the generalized eigenvalue problem to obtain the best projections that not only separates data points from different classes, but also preserves local structures and temporal pose correspondence of sequences from the same class. Experimental results demonstrate that SSTNTL outperforms the manifold embedding methods with other topologies or local discriminant information. Moreover, compared with state-of-the-art action recognition algorithms, SSTNTL gives convincing performance for both human and gesture action recognition.
doi_str_mv 10.1109/TCSVT.2013.2248494
format article
fullrecord <record><control><sourceid>pascalfrancis_ieee_</sourceid><recordid>TN_cdi_ieee_primary_6469204</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6469204</ieee_id><sourcerecordid>27678183</sourcerecordid><originalsourceid>FETCH-LOGICAL-c297t-cc3ed42216f566714ea9e3f4f42aeb9689da90c0e2dd5b81a892e435ebb89c0e3</originalsourceid><addsrcrecordid>eNo9kMtOwzAQRS0EEuXxA7DJhmWKPbETe1lVvKQKEA1sI8cZp0ZpHNkFqX9PSquu5mrmnlkcQm4YnTJG1X05X36VU6AsmwJwyRU_IRMmhEwBqDgdMxUslcDEObmI8ZtSNraKCXlf_gwYfl3EJlkOeuN8WuJ68EF3ySu6dlX7sPK-SUo_-M6322SBOvSubxPrQzIzI9EnH2h827tdviJnVncRrw_zknw-PpTz53Tx9vQyny1SA6rYpMZk2HAAlluR5wXjqBVmllsOGmuVS9VoRQ1FaBpRS6alAuSZwLqWalxnlwT2f03wMQa01RDcWodtxWi1c1L9O6l2TqqDkxG620ODjkZ3NujeuHgkocgLyWQ29m73PYeIx3POcwWUZ3_pKGx2</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Supervised Spatio-Temporal Neighborhood Topology Learning for Action Recognition</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Ma, Andy J. ; Yuen, Pong C. ; Zou, Wilman W. W. ; Jian-Huang Lai</creator><creatorcontrib>Ma, Andy J. ; Yuen, Pong C. ; Zou, Wilman W. W. ; Jian-Huang Lai</creatorcontrib><description>Supervised manifold learning has been successfully applied to action recognition, in which class label information could improve the recognition performance. However, the learned manifold may not be able to well preserve both the local structure and global constraint of temporal labels in action sequences. To overcome this problem, this paper proposes a new supervised manifold learning algorithm called supervised spatio-temporal neighborhood topology learning (SSTNTL) for action recognition. By analyzing the topological characteristics in the context of action recognition, we propose to construct the neighborhood topology using both supervised spatial and temporal pose correspondence information. Employing the property in locality preserving projection (LPP), SSTNTL solves the generalized eigenvalue problem to obtain the best projections that not only separates data points from different classes, but also preserves local structures and temporal pose correspondence of sequences from the same class. Experimental results demonstrate that SSTNTL outperforms the manifold embedding methods with other topologies or local discriminant information. Moreover, compared with state-of-the-art action recognition algorithms, SSTNTL gives convincing performance for both human and gesture action recognition.</description><identifier>ISSN: 1051-8215</identifier><identifier>EISSN: 1558-2205</identifier><identifier>DOI: 10.1109/TCSVT.2013.2248494</identifier><identifier>CODEN: ITCTEM</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Action recognition ; Applied sciences ; Context ; Detection, estimation, filtering, equalization, prediction ; Eigenvalues and eigenfunctions ; Exact sciences and technology ; Feature extraction ; Image processing ; Information, signal and communications theory ; manifold learning ; Manifolds ; neighborhood topology learning ; Pattern recognition ; Signal and communications theory ; Signal processing ; Signal, noise ; supervised spatial ; Telecommunications and information theory ; temporal pose correspondence ; Topology ; Vectors</subject><ispartof>IEEE transactions on circuits and systems for video technology, 2013-08, Vol.23 (8), p.1447-1460</ispartof><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c297t-cc3ed42216f566714ea9e3f4f42aeb9689da90c0e2dd5b81a892e435ebb89c0e3</citedby><cites>FETCH-LOGICAL-c297t-cc3ed42216f566714ea9e3f4f42aeb9689da90c0e2dd5b81a892e435ebb89c0e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6469204$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,54771</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27678183$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Ma, Andy J.</creatorcontrib><creatorcontrib>Yuen, Pong C.</creatorcontrib><creatorcontrib>Zou, Wilman W. W.</creatorcontrib><creatorcontrib>Jian-Huang Lai</creatorcontrib><title>Supervised Spatio-Temporal Neighborhood Topology Learning for Action Recognition</title><title>IEEE transactions on circuits and systems for video technology</title><addtitle>TCSVT</addtitle><description>Supervised manifold learning has been successfully applied to action recognition, in which class label information could improve the recognition performance. However, the learned manifold may not be able to well preserve both the local structure and global constraint of temporal labels in action sequences. To overcome this problem, this paper proposes a new supervised manifold learning algorithm called supervised spatio-temporal neighborhood topology learning (SSTNTL) for action recognition. By analyzing the topological characteristics in the context of action recognition, we propose to construct the neighborhood topology using both supervised spatial and temporal pose correspondence information. Employing the property in locality preserving projection (LPP), SSTNTL solves the generalized eigenvalue problem to obtain the best projections that not only separates data points from different classes, but also preserves local structures and temporal pose correspondence of sequences from the same class. Experimental results demonstrate that SSTNTL outperforms the manifold embedding methods with other topologies or local discriminant information. Moreover, compared with state-of-the-art action recognition algorithms, SSTNTL gives convincing performance for both human and gesture action recognition.</description><subject>Action recognition</subject><subject>Applied sciences</subject><subject>Context</subject><subject>Detection, estimation, filtering, equalization, prediction</subject><subject>Eigenvalues and eigenfunctions</subject><subject>Exact sciences and technology</subject><subject>Feature extraction</subject><subject>Image processing</subject><subject>Information, signal and communications theory</subject><subject>manifold learning</subject><subject>Manifolds</subject><subject>neighborhood topology learning</subject><subject>Pattern recognition</subject><subject>Signal and communications theory</subject><subject>Signal processing</subject><subject>Signal, noise</subject><subject>supervised spatial</subject><subject>Telecommunications and information theory</subject><subject>temporal pose correspondence</subject><subject>Topology</subject><subject>Vectors</subject><issn>1051-8215</issn><issn>1558-2205</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNo9kMtOwzAQRS0EEuXxA7DJhmWKPbETe1lVvKQKEA1sI8cZp0ZpHNkFqX9PSquu5mrmnlkcQm4YnTJG1X05X36VU6AsmwJwyRU_IRMmhEwBqDgdMxUslcDEObmI8ZtSNraKCXlf_gwYfl3EJlkOeuN8WuJ68EF3ySu6dlX7sPK-SUo_-M6322SBOvSubxPrQzIzI9EnH2h827tdviJnVncRrw_zknw-PpTz53Tx9vQyny1SA6rYpMZk2HAAlluR5wXjqBVmllsOGmuVS9VoRQ1FaBpRS6alAuSZwLqWalxnlwT2f03wMQa01RDcWodtxWi1c1L9O6l2TqqDkxG620ODjkZ3NujeuHgkocgLyWQ29m73PYeIx3POcwWUZ3_pKGx2</recordid><startdate>20130801</startdate><enddate>20130801</enddate><creator>Ma, Andy J.</creator><creator>Yuen, Pong C.</creator><creator>Zou, Wilman W. W.</creator><creator>Jian-Huang Lai</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20130801</creationdate><title>Supervised Spatio-Temporal Neighborhood Topology Learning for Action Recognition</title><author>Ma, Andy J. ; Yuen, Pong C. ; Zou, Wilman W. W. ; Jian-Huang Lai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c297t-cc3ed42216f566714ea9e3f4f42aeb9689da90c0e2dd5b81a892e435ebb89c0e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Action recognition</topic><topic>Applied sciences</topic><topic>Context</topic><topic>Detection, estimation, filtering, equalization, prediction</topic><topic>Eigenvalues and eigenfunctions</topic><topic>Exact sciences and technology</topic><topic>Feature extraction</topic><topic>Image processing</topic><topic>Information, signal and communications theory</topic><topic>manifold learning</topic><topic>Manifolds</topic><topic>neighborhood topology learning</topic><topic>Pattern recognition</topic><topic>Signal and communications theory</topic><topic>Signal processing</topic><topic>Signal, noise</topic><topic>supervised spatial</topic><topic>Telecommunications and information theory</topic><topic>temporal pose correspondence</topic><topic>Topology</topic><topic>Vectors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ma, Andy J.</creatorcontrib><creatorcontrib>Yuen, Pong C.</creatorcontrib><creatorcontrib>Zou, Wilman W. W.</creatorcontrib><creatorcontrib>Jian-Huang Lai</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Electronic Library Online</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>IEEE transactions on circuits and systems for video technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ma, Andy J.</au><au>Yuen, Pong C.</au><au>Zou, Wilman W. W.</au><au>Jian-Huang Lai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Supervised Spatio-Temporal Neighborhood Topology Learning for Action Recognition</atitle><jtitle>IEEE transactions on circuits and systems for video technology</jtitle><stitle>TCSVT</stitle><date>2013-08-01</date><risdate>2013</risdate><volume>23</volume><issue>8</issue><spage>1447</spage><epage>1460</epage><pages>1447-1460</pages><issn>1051-8215</issn><eissn>1558-2205</eissn><coden>ITCTEM</coden><abstract>Supervised manifold learning has been successfully applied to action recognition, in which class label information could improve the recognition performance. However, the learned manifold may not be able to well preserve both the local structure and global constraint of temporal labels in action sequences. To overcome this problem, this paper proposes a new supervised manifold learning algorithm called supervised spatio-temporal neighborhood topology learning (SSTNTL) for action recognition. By analyzing the topological characteristics in the context of action recognition, we propose to construct the neighborhood topology using both supervised spatial and temporal pose correspondence information. Employing the property in locality preserving projection (LPP), SSTNTL solves the generalized eigenvalue problem to obtain the best projections that not only separates data points from different classes, but also preserves local structures and temporal pose correspondence of sequences from the same class. Experimental results demonstrate that SSTNTL outperforms the manifold embedding methods with other topologies or local discriminant information. Moreover, compared with state-of-the-art action recognition algorithms, SSTNTL gives convincing performance for both human and gesture action recognition.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TCSVT.2013.2248494</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1051-8215
ispartof IEEE transactions on circuits and systems for video technology, 2013-08, Vol.23 (8), p.1447-1460
issn 1051-8215
1558-2205
language eng
recordid cdi_ieee_primary_6469204
source IEEE Electronic Library (IEL) Journals
subjects Action recognition
Applied sciences
Context
Detection, estimation, filtering, equalization, prediction
Eigenvalues and eigenfunctions
Exact sciences and technology
Feature extraction
Image processing
Information, signal and communications theory
manifold learning
Manifolds
neighborhood topology learning
Pattern recognition
Signal and communications theory
Signal processing
Signal, noise
supervised spatial
Telecommunications and information theory
temporal pose correspondence
Topology
Vectors
title Supervised Spatio-Temporal Neighborhood Topology Learning for Action Recognition
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T11%3A03%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Supervised%20Spatio-Temporal%20Neighborhood%20Topology%20Learning%20for%20Action%20Recognition&rft.jtitle=IEEE%20transactions%20on%20circuits%20and%20systems%20for%20video%20technology&rft.au=Ma,%20Andy%20J.&rft.date=2013-08-01&rft.volume=23&rft.issue=8&rft.spage=1447&rft.epage=1460&rft.pages=1447-1460&rft.issn=1051-8215&rft.eissn=1558-2205&rft.coden=ITCTEM&rft_id=info:doi/10.1109/TCSVT.2013.2248494&rft_dat=%3Cpascalfrancis_ieee_%3E27678183%3C/pascalfrancis_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c297t-cc3ed42216f566714ea9e3f4f42aeb9689da90c0e2dd5b81a892e435ebb89c0e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6469204&rfr_iscdi=true