Loading…
Supervised Spatio-Temporal Neighborhood Topology Learning for Action Recognition
Supervised manifold learning has been successfully applied to action recognition, in which class label information could improve the recognition performance. However, the learned manifold may not be able to well preserve both the local structure and global constraint of temporal labels in action seq...
Saved in:
Published in: | IEEE transactions on circuits and systems for video technology 2013-08, Vol.23 (8), p.1447-1460 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c297t-cc3ed42216f566714ea9e3f4f42aeb9689da90c0e2dd5b81a892e435ebb89c0e3 |
---|---|
cites | cdi_FETCH-LOGICAL-c297t-cc3ed42216f566714ea9e3f4f42aeb9689da90c0e2dd5b81a892e435ebb89c0e3 |
container_end_page | 1460 |
container_issue | 8 |
container_start_page | 1447 |
container_title | IEEE transactions on circuits and systems for video technology |
container_volume | 23 |
creator | Ma, Andy J. Yuen, Pong C. Zou, Wilman W. W. Jian-Huang Lai |
description | Supervised manifold learning has been successfully applied to action recognition, in which class label information could improve the recognition performance. However, the learned manifold may not be able to well preserve both the local structure and global constraint of temporal labels in action sequences. To overcome this problem, this paper proposes a new supervised manifold learning algorithm called supervised spatio-temporal neighborhood topology learning (SSTNTL) for action recognition. By analyzing the topological characteristics in the context of action recognition, we propose to construct the neighborhood topology using both supervised spatial and temporal pose correspondence information. Employing the property in locality preserving projection (LPP), SSTNTL solves the generalized eigenvalue problem to obtain the best projections that not only separates data points from different classes, but also preserves local structures and temporal pose correspondence of sequences from the same class. Experimental results demonstrate that SSTNTL outperforms the manifold embedding methods with other topologies or local discriminant information. Moreover, compared with state-of-the-art action recognition algorithms, SSTNTL gives convincing performance for both human and gesture action recognition. |
doi_str_mv | 10.1109/TCSVT.2013.2248494 |
format | article |
fullrecord | <record><control><sourceid>pascalfrancis_ieee_</sourceid><recordid>TN_cdi_ieee_primary_6469204</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6469204</ieee_id><sourcerecordid>27678183</sourcerecordid><originalsourceid>FETCH-LOGICAL-c297t-cc3ed42216f566714ea9e3f4f42aeb9689da90c0e2dd5b81a892e435ebb89c0e3</originalsourceid><addsrcrecordid>eNo9kMtOwzAQRS0EEuXxA7DJhmWKPbETe1lVvKQKEA1sI8cZp0ZpHNkFqX9PSquu5mrmnlkcQm4YnTJG1X05X36VU6AsmwJwyRU_IRMmhEwBqDgdMxUslcDEObmI8ZtSNraKCXlf_gwYfl3EJlkOeuN8WuJ68EF3ySu6dlX7sPK-SUo_-M6322SBOvSubxPrQzIzI9EnH2h827tdviJnVncRrw_zknw-PpTz53Tx9vQyny1SA6rYpMZk2HAAlluR5wXjqBVmllsOGmuVS9VoRQ1FaBpRS6alAuSZwLqWalxnlwT2f03wMQa01RDcWodtxWi1c1L9O6l2TqqDkxG620ODjkZ3NujeuHgkocgLyWQ29m73PYeIx3POcwWUZ3_pKGx2</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Supervised Spatio-Temporal Neighborhood Topology Learning for Action Recognition</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Ma, Andy J. ; Yuen, Pong C. ; Zou, Wilman W. W. ; Jian-Huang Lai</creator><creatorcontrib>Ma, Andy J. ; Yuen, Pong C. ; Zou, Wilman W. W. ; Jian-Huang Lai</creatorcontrib><description>Supervised manifold learning has been successfully applied to action recognition, in which class label information could improve the recognition performance. However, the learned manifold may not be able to well preserve both the local structure and global constraint of temporal labels in action sequences. To overcome this problem, this paper proposes a new supervised manifold learning algorithm called supervised spatio-temporal neighborhood topology learning (SSTNTL) for action recognition. By analyzing the topological characteristics in the context of action recognition, we propose to construct the neighborhood topology using both supervised spatial and temporal pose correspondence information. Employing the property in locality preserving projection (LPP), SSTNTL solves the generalized eigenvalue problem to obtain the best projections that not only separates data points from different classes, but also preserves local structures and temporal pose correspondence of sequences from the same class. Experimental results demonstrate that SSTNTL outperforms the manifold embedding methods with other topologies or local discriminant information. Moreover, compared with state-of-the-art action recognition algorithms, SSTNTL gives convincing performance for both human and gesture action recognition.</description><identifier>ISSN: 1051-8215</identifier><identifier>EISSN: 1558-2205</identifier><identifier>DOI: 10.1109/TCSVT.2013.2248494</identifier><identifier>CODEN: ITCTEM</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Action recognition ; Applied sciences ; Context ; Detection, estimation, filtering, equalization, prediction ; Eigenvalues and eigenfunctions ; Exact sciences and technology ; Feature extraction ; Image processing ; Information, signal and communications theory ; manifold learning ; Manifolds ; neighborhood topology learning ; Pattern recognition ; Signal and communications theory ; Signal processing ; Signal, noise ; supervised spatial ; Telecommunications and information theory ; temporal pose correspondence ; Topology ; Vectors</subject><ispartof>IEEE transactions on circuits and systems for video technology, 2013-08, Vol.23 (8), p.1447-1460</ispartof><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c297t-cc3ed42216f566714ea9e3f4f42aeb9689da90c0e2dd5b81a892e435ebb89c0e3</citedby><cites>FETCH-LOGICAL-c297t-cc3ed42216f566714ea9e3f4f42aeb9689da90c0e2dd5b81a892e435ebb89c0e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6469204$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,54771</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27678183$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Ma, Andy J.</creatorcontrib><creatorcontrib>Yuen, Pong C.</creatorcontrib><creatorcontrib>Zou, Wilman W. W.</creatorcontrib><creatorcontrib>Jian-Huang Lai</creatorcontrib><title>Supervised Spatio-Temporal Neighborhood Topology Learning for Action Recognition</title><title>IEEE transactions on circuits and systems for video technology</title><addtitle>TCSVT</addtitle><description>Supervised manifold learning has been successfully applied to action recognition, in which class label information could improve the recognition performance. However, the learned manifold may not be able to well preserve both the local structure and global constraint of temporal labels in action sequences. To overcome this problem, this paper proposes a new supervised manifold learning algorithm called supervised spatio-temporal neighborhood topology learning (SSTNTL) for action recognition. By analyzing the topological characteristics in the context of action recognition, we propose to construct the neighborhood topology using both supervised spatial and temporal pose correspondence information. Employing the property in locality preserving projection (LPP), SSTNTL solves the generalized eigenvalue problem to obtain the best projections that not only separates data points from different classes, but also preserves local structures and temporal pose correspondence of sequences from the same class. Experimental results demonstrate that SSTNTL outperforms the manifold embedding methods with other topologies or local discriminant information. Moreover, compared with state-of-the-art action recognition algorithms, SSTNTL gives convincing performance for both human and gesture action recognition.</description><subject>Action recognition</subject><subject>Applied sciences</subject><subject>Context</subject><subject>Detection, estimation, filtering, equalization, prediction</subject><subject>Eigenvalues and eigenfunctions</subject><subject>Exact sciences and technology</subject><subject>Feature extraction</subject><subject>Image processing</subject><subject>Information, signal and communications theory</subject><subject>manifold learning</subject><subject>Manifolds</subject><subject>neighborhood topology learning</subject><subject>Pattern recognition</subject><subject>Signal and communications theory</subject><subject>Signal processing</subject><subject>Signal, noise</subject><subject>supervised spatial</subject><subject>Telecommunications and information theory</subject><subject>temporal pose correspondence</subject><subject>Topology</subject><subject>Vectors</subject><issn>1051-8215</issn><issn>1558-2205</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNo9kMtOwzAQRS0EEuXxA7DJhmWKPbETe1lVvKQKEA1sI8cZp0ZpHNkFqX9PSquu5mrmnlkcQm4YnTJG1X05X36VU6AsmwJwyRU_IRMmhEwBqDgdMxUslcDEObmI8ZtSNraKCXlf_gwYfl3EJlkOeuN8WuJ68EF3ySu6dlX7sPK-SUo_-M6322SBOvSubxPrQzIzI9EnH2h827tdviJnVncRrw_zknw-PpTz53Tx9vQyny1SA6rYpMZk2HAAlluR5wXjqBVmllsOGmuVS9VoRQ1FaBpRS6alAuSZwLqWalxnlwT2f03wMQa01RDcWodtxWi1c1L9O6l2TqqDkxG620ODjkZ3NujeuHgkocgLyWQ29m73PYeIx3POcwWUZ3_pKGx2</recordid><startdate>20130801</startdate><enddate>20130801</enddate><creator>Ma, Andy J.</creator><creator>Yuen, Pong C.</creator><creator>Zou, Wilman W. W.</creator><creator>Jian-Huang Lai</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20130801</creationdate><title>Supervised Spatio-Temporal Neighborhood Topology Learning for Action Recognition</title><author>Ma, Andy J. ; Yuen, Pong C. ; Zou, Wilman W. W. ; Jian-Huang Lai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c297t-cc3ed42216f566714ea9e3f4f42aeb9689da90c0e2dd5b81a892e435ebb89c0e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Action recognition</topic><topic>Applied sciences</topic><topic>Context</topic><topic>Detection, estimation, filtering, equalization, prediction</topic><topic>Eigenvalues and eigenfunctions</topic><topic>Exact sciences and technology</topic><topic>Feature extraction</topic><topic>Image processing</topic><topic>Information, signal and communications theory</topic><topic>manifold learning</topic><topic>Manifolds</topic><topic>neighborhood topology learning</topic><topic>Pattern recognition</topic><topic>Signal and communications theory</topic><topic>Signal processing</topic><topic>Signal, noise</topic><topic>supervised spatial</topic><topic>Telecommunications and information theory</topic><topic>temporal pose correspondence</topic><topic>Topology</topic><topic>Vectors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ma, Andy J.</creatorcontrib><creatorcontrib>Yuen, Pong C.</creatorcontrib><creatorcontrib>Zou, Wilman W. W.</creatorcontrib><creatorcontrib>Jian-Huang Lai</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Electronic Library Online</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>IEEE transactions on circuits and systems for video technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ma, Andy J.</au><au>Yuen, Pong C.</au><au>Zou, Wilman W. W.</au><au>Jian-Huang Lai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Supervised Spatio-Temporal Neighborhood Topology Learning for Action Recognition</atitle><jtitle>IEEE transactions on circuits and systems for video technology</jtitle><stitle>TCSVT</stitle><date>2013-08-01</date><risdate>2013</risdate><volume>23</volume><issue>8</issue><spage>1447</spage><epage>1460</epage><pages>1447-1460</pages><issn>1051-8215</issn><eissn>1558-2205</eissn><coden>ITCTEM</coden><abstract>Supervised manifold learning has been successfully applied to action recognition, in which class label information could improve the recognition performance. However, the learned manifold may not be able to well preserve both the local structure and global constraint of temporal labels in action sequences. To overcome this problem, this paper proposes a new supervised manifold learning algorithm called supervised spatio-temporal neighborhood topology learning (SSTNTL) for action recognition. By analyzing the topological characteristics in the context of action recognition, we propose to construct the neighborhood topology using both supervised spatial and temporal pose correspondence information. Employing the property in locality preserving projection (LPP), SSTNTL solves the generalized eigenvalue problem to obtain the best projections that not only separates data points from different classes, but also preserves local structures and temporal pose correspondence of sequences from the same class. Experimental results demonstrate that SSTNTL outperforms the manifold embedding methods with other topologies or local discriminant information. Moreover, compared with state-of-the-art action recognition algorithms, SSTNTL gives convincing performance for both human and gesture action recognition.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TCSVT.2013.2248494</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1051-8215 |
ispartof | IEEE transactions on circuits and systems for video technology, 2013-08, Vol.23 (8), p.1447-1460 |
issn | 1051-8215 1558-2205 |
language | eng |
recordid | cdi_ieee_primary_6469204 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Action recognition Applied sciences Context Detection, estimation, filtering, equalization, prediction Eigenvalues and eigenfunctions Exact sciences and technology Feature extraction Image processing Information, signal and communications theory manifold learning Manifolds neighborhood topology learning Pattern recognition Signal and communications theory Signal processing Signal, noise supervised spatial Telecommunications and information theory temporal pose correspondence Topology Vectors |
title | Supervised Spatio-Temporal Neighborhood Topology Learning for Action Recognition |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T11%3A03%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Supervised%20Spatio-Temporal%20Neighborhood%20Topology%20Learning%20for%20Action%20Recognition&rft.jtitle=IEEE%20transactions%20on%20circuits%20and%20systems%20for%20video%20technology&rft.au=Ma,%20Andy%20J.&rft.date=2013-08-01&rft.volume=23&rft.issue=8&rft.spage=1447&rft.epage=1460&rft.pages=1447-1460&rft.issn=1051-8215&rft.eissn=1558-2205&rft.coden=ITCTEM&rft_id=info:doi/10.1109/TCSVT.2013.2248494&rft_dat=%3Cpascalfrancis_ieee_%3E27678183%3C/pascalfrancis_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c297t-cc3ed42216f566714ea9e3f4f42aeb9689da90c0e2dd5b81a892e435ebb89c0e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6469204&rfr_iscdi=true |