Loading…

Interwoven-Disk-Loaded Circular Waveguide for a Wideband Gyro-Traveling-Wave Tube

An additional disk was introduced in the unit cell of a periodic disk-loaded interaction structure for a gyro-traveling-wave tube, and the small-signal gain-frequency response of the device was studied. The dispersion data of interwoven-disk-loaded structure were fed into the small-signal gain equat...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on plasma science 2013-03, Vol.41 (3), p.456-460
Main Authors: Kesari, V., Keshari, J. P.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:An additional disk was introduced in the unit cell of a periodic disk-loaded interaction structure for a gyro-traveling-wave tube, and the small-signal gain-frequency response of the device was studied. The dispersion data of interwoven-disk-loaded structure were fed into the small-signal gain equation for the calculation of the small-signal device gain. The effects of the gyrating electron beam, magnetic field, and dimensional parameters were discussed in order to achieve a wideband device performance. The gain-frequency response of an interwoven-disk-loaded device was compared with that of a conventional disk-loaded device to show the widening of the device bandwidth. For typically chosen structure parameters, the 3-dB device bandwidth was found to be improved from 4.7 to 6.4 GHz ( ~ 36%) in a Ka-band device.
ISSN:0093-3813
1939-9375
DOI:10.1109/TPS.2013.2241458