Loading…
Intelligent hierarchical layout segmentation of document images on the basis of colour content
This paper proposes a general methodology for automatic layout segmentation of documents. We first use colour histograms for extracting dominant colours of an image. This information is then used to hierarchically segment documents into regions of interest represented as polygons. If a region of int...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 194 vol.1 |
container_issue | |
container_start_page | 191 |
container_title | |
container_volume | 1 |
creator | Mighlani, D. Hennig, A. Sherkat, N. Whitrow, R.J. |
description | This paper proposes a general methodology for automatic layout segmentation of documents. We first use colour histograms for extracting dominant colours of an image. This information is then used to hierarchically segment documents into regions of interest represented as polygons. If a region of interest is a picture the algorithm intelligently refrains from segmenting it further, while coloured regions that contain text are subsegmented. The method has been tested on 50 real life documents, such as office letters, brochures, and technical papers, scanned at 100/spl times/100 dpi resolution. Regions are detected with about 68% reliability. A critical analysis of the results is presented. |
doi_str_mv | 10.1109/TENCON.1997.647289 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_647289</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>647289</ieee_id><sourcerecordid>647289</sourcerecordid><originalsourceid>FETCH-ieee_primary_6472893</originalsourceid><addsrcrecordid>eNp9jrsOgjAYhZsYE2-8AFNfQGzlPhOMLrowS2r9gZpCTVsG3t4SnT3Ll5wvOTkI-ZQElJL8UJXX4nYNaJ6nQRKlxyxfoA1JMxJGYRJHK-QZ8yIuURzTLFuj-2WwIKVoYbC4E6CZ5p3gTGLJJjVabKDtnWNWqAGrBj8VH-cCi561YLBrbQf4wYwws-dKqlE7uN3B7tCyYdKA9-MW-aeyKs57AQD1W7sRPdXfp-Ff-QEsTkTg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Intelligent hierarchical layout segmentation of document images on the basis of colour content</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Mighlani, D. ; Hennig, A. ; Sherkat, N. ; Whitrow, R.J.</creator><creatorcontrib>Mighlani, D. ; Hennig, A. ; Sherkat, N. ; Whitrow, R.J.</creatorcontrib><description>This paper proposes a general methodology for automatic layout segmentation of documents. We first use colour histograms for extracting dominant colours of an image. This information is then used to hierarchically segment documents into regions of interest represented as polygons. If a region of interest is a picture the algorithm intelligently refrains from segmenting it further, while coloured regions that contain text are subsegmented. The method has been tested on 50 real life documents, such as office letters, brochures, and technical papers, scanned at 100/spl times/100 dpi resolution. Regions are detected with about 68% reliability. A critical analysis of the results is presented.</description><identifier>ISBN: 0780343654</identifier><identifier>ISBN: 9780780343658</identifier><identifier>DOI: 10.1109/TENCON.1997.647289</identifier><language>eng</language><publisher>IEEE</publisher><subject>Data mining ; Graphics ; Histograms ; Image databases ; Image segmentation ; Life testing ; Microcomputers ; Pixel ; Process design ; World Wide Web</subject><ispartof>TENCON '97 Brisbane - Australia. Proceedings of IEEE TENCON '97. IEEE Region 10 Annual Conference. Speech and Image Technologies for Computing and Telecommunications (Cat. No.97CH36162), 1997, Vol.1, p.191-194 vol.1</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/647289$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,4036,4037,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/647289$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Mighlani, D.</creatorcontrib><creatorcontrib>Hennig, A.</creatorcontrib><creatorcontrib>Sherkat, N.</creatorcontrib><creatorcontrib>Whitrow, R.J.</creatorcontrib><title>Intelligent hierarchical layout segmentation of document images on the basis of colour content</title><title>TENCON '97 Brisbane - Australia. Proceedings of IEEE TENCON '97. IEEE Region 10 Annual Conference. Speech and Image Technologies for Computing and Telecommunications (Cat. No.97CH36162)</title><addtitle>TENCON</addtitle><description>This paper proposes a general methodology for automatic layout segmentation of documents. We first use colour histograms for extracting dominant colours of an image. This information is then used to hierarchically segment documents into regions of interest represented as polygons. If a region of interest is a picture the algorithm intelligently refrains from segmenting it further, while coloured regions that contain text are subsegmented. The method has been tested on 50 real life documents, such as office letters, brochures, and technical papers, scanned at 100/spl times/100 dpi resolution. Regions are detected with about 68% reliability. A critical analysis of the results is presented.</description><subject>Data mining</subject><subject>Graphics</subject><subject>Histograms</subject><subject>Image databases</subject><subject>Image segmentation</subject><subject>Life testing</subject><subject>Microcomputers</subject><subject>Pixel</subject><subject>Process design</subject><subject>World Wide Web</subject><isbn>0780343654</isbn><isbn>9780780343658</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>1997</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNp9jrsOgjAYhZsYE2-8AFNfQGzlPhOMLrowS2r9gZpCTVsG3t4SnT3Ll5wvOTkI-ZQElJL8UJXX4nYNaJ6nQRKlxyxfoA1JMxJGYRJHK-QZ8yIuURzTLFuj-2WwIKVoYbC4E6CZ5p3gTGLJJjVabKDtnWNWqAGrBj8VH-cCi561YLBrbQf4wYwws-dKqlE7uN3B7tCyYdKA9-MW-aeyKs57AQD1W7sRPdXfp-Ff-QEsTkTg</recordid><startdate>1997</startdate><enddate>1997</enddate><creator>Mighlani, D.</creator><creator>Hennig, A.</creator><creator>Sherkat, N.</creator><creator>Whitrow, R.J.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>1997</creationdate><title>Intelligent hierarchical layout segmentation of document images on the basis of colour content</title><author>Mighlani, D. ; Hennig, A. ; Sherkat, N. ; Whitrow, R.J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-ieee_primary_6472893</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>1997</creationdate><topic>Data mining</topic><topic>Graphics</topic><topic>Histograms</topic><topic>Image databases</topic><topic>Image segmentation</topic><topic>Life testing</topic><topic>Microcomputers</topic><topic>Pixel</topic><topic>Process design</topic><topic>World Wide Web</topic><toplevel>online_resources</toplevel><creatorcontrib>Mighlani, D.</creatorcontrib><creatorcontrib>Hennig, A.</creatorcontrib><creatorcontrib>Sherkat, N.</creatorcontrib><creatorcontrib>Whitrow, R.J.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Mighlani, D.</au><au>Hennig, A.</au><au>Sherkat, N.</au><au>Whitrow, R.J.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Intelligent hierarchical layout segmentation of document images on the basis of colour content</atitle><btitle>TENCON '97 Brisbane - Australia. Proceedings of IEEE TENCON '97. IEEE Region 10 Annual Conference. Speech and Image Technologies for Computing and Telecommunications (Cat. No.97CH36162)</btitle><stitle>TENCON</stitle><date>1997</date><risdate>1997</risdate><volume>1</volume><spage>191</spage><epage>194 vol.1</epage><pages>191-194 vol.1</pages><isbn>0780343654</isbn><isbn>9780780343658</isbn><abstract>This paper proposes a general methodology for automatic layout segmentation of documents. We first use colour histograms for extracting dominant colours of an image. This information is then used to hierarchically segment documents into regions of interest represented as polygons. If a region of interest is a picture the algorithm intelligently refrains from segmenting it further, while coloured regions that contain text are subsegmented. The method has been tested on 50 real life documents, such as office letters, brochures, and technical papers, scanned at 100/spl times/100 dpi resolution. Regions are detected with about 68% reliability. A critical analysis of the results is presented.</abstract><pub>IEEE</pub><doi>10.1109/TENCON.1997.647289</doi></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 0780343654 |
ispartof | TENCON '97 Brisbane - Australia. Proceedings of IEEE TENCON '97. IEEE Region 10 Annual Conference. Speech and Image Technologies for Computing and Telecommunications (Cat. No.97CH36162), 1997, Vol.1, p.191-194 vol.1 |
issn | |
language | eng |
recordid | cdi_ieee_primary_647289 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Data mining Graphics Histograms Image databases Image segmentation Life testing Microcomputers Pixel Process design World Wide Web |
title | Intelligent hierarchical layout segmentation of document images on the basis of colour content |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T19%3A31%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Intelligent%20hierarchical%20layout%20segmentation%20of%20document%20images%20on%20the%20basis%20of%20colour%20content&rft.btitle=TENCON%20'97%20Brisbane%20-%20Australia.%20Proceedings%20of%20IEEE%20TENCON%20'97.%20IEEE%20Region%2010%20Annual%20Conference.%20Speech%20and%20Image%20Technologies%20for%20Computing%20and%20Telecommunications%20(Cat.%20No.97CH36162)&rft.au=Mighlani,%20D.&rft.date=1997&rft.volume=1&rft.spage=191&rft.epage=194%20vol.1&rft.pages=191-194%20vol.1&rft.isbn=0780343654&rft.isbn_list=9780780343658&rft_id=info:doi/10.1109/TENCON.1997.647289&rft_dat=%3Cieee_6IE%3E647289%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-ieee_primary_6472893%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=647289&rfr_iscdi=true |