Loading…

Intelligent hierarchical layout segmentation of document images on the basis of colour content

This paper proposes a general methodology for automatic layout segmentation of documents. We first use colour histograms for extracting dominant colours of an image. This information is then used to hierarchically segment documents into regions of interest represented as polygons. If a region of int...

Full description

Saved in:
Bibliographic Details
Main Authors: Mighlani, D., Hennig, A., Sherkat, N., Whitrow, R.J.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 194 vol.1
container_issue
container_start_page 191
container_title
container_volume 1
creator Mighlani, D.
Hennig, A.
Sherkat, N.
Whitrow, R.J.
description This paper proposes a general methodology for automatic layout segmentation of documents. We first use colour histograms for extracting dominant colours of an image. This information is then used to hierarchically segment documents into regions of interest represented as polygons. If a region of interest is a picture the algorithm intelligently refrains from segmenting it further, while coloured regions that contain text are subsegmented. The method has been tested on 50 real life documents, such as office letters, brochures, and technical papers, scanned at 100/spl times/100 dpi resolution. Regions are detected with about 68% reliability. A critical analysis of the results is presented.
doi_str_mv 10.1109/TENCON.1997.647289
format conference_proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_647289</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>647289</ieee_id><sourcerecordid>647289</sourcerecordid><originalsourceid>FETCH-ieee_primary_6472893</originalsourceid><addsrcrecordid>eNp9jrsOgjAYhZsYE2-8AFNfQGzlPhOMLrowS2r9gZpCTVsG3t4SnT3Ll5wvOTkI-ZQElJL8UJXX4nYNaJ6nQRKlxyxfoA1JMxJGYRJHK-QZ8yIuURzTLFuj-2WwIKVoYbC4E6CZ5p3gTGLJJjVabKDtnWNWqAGrBj8VH-cCi561YLBrbQf4wYwws-dKqlE7uN3B7tCyYdKA9-MW-aeyKs57AQD1W7sRPdXfp-Ff-QEsTkTg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Intelligent hierarchical layout segmentation of document images on the basis of colour content</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Mighlani, D. ; Hennig, A. ; Sherkat, N. ; Whitrow, R.J.</creator><creatorcontrib>Mighlani, D. ; Hennig, A. ; Sherkat, N. ; Whitrow, R.J.</creatorcontrib><description>This paper proposes a general methodology for automatic layout segmentation of documents. We first use colour histograms for extracting dominant colours of an image. This information is then used to hierarchically segment documents into regions of interest represented as polygons. If a region of interest is a picture the algorithm intelligently refrains from segmenting it further, while coloured regions that contain text are subsegmented. The method has been tested on 50 real life documents, such as office letters, brochures, and technical papers, scanned at 100/spl times/100 dpi resolution. Regions are detected with about 68% reliability. A critical analysis of the results is presented.</description><identifier>ISBN: 0780343654</identifier><identifier>ISBN: 9780780343658</identifier><identifier>DOI: 10.1109/TENCON.1997.647289</identifier><language>eng</language><publisher>IEEE</publisher><subject>Data mining ; Graphics ; Histograms ; Image databases ; Image segmentation ; Life testing ; Microcomputers ; Pixel ; Process design ; World Wide Web</subject><ispartof>TENCON '97 Brisbane - Australia. Proceedings of IEEE TENCON '97. IEEE Region 10 Annual Conference. Speech and Image Technologies for Computing and Telecommunications (Cat. No.97CH36162), 1997, Vol.1, p.191-194 vol.1</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/647289$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,4036,4037,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/647289$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Mighlani, D.</creatorcontrib><creatorcontrib>Hennig, A.</creatorcontrib><creatorcontrib>Sherkat, N.</creatorcontrib><creatorcontrib>Whitrow, R.J.</creatorcontrib><title>Intelligent hierarchical layout segmentation of document images on the basis of colour content</title><title>TENCON '97 Brisbane - Australia. Proceedings of IEEE TENCON '97. IEEE Region 10 Annual Conference. Speech and Image Technologies for Computing and Telecommunications (Cat. No.97CH36162)</title><addtitle>TENCON</addtitle><description>This paper proposes a general methodology for automatic layout segmentation of documents. We first use colour histograms for extracting dominant colours of an image. This information is then used to hierarchically segment documents into regions of interest represented as polygons. If a region of interest is a picture the algorithm intelligently refrains from segmenting it further, while coloured regions that contain text are subsegmented. The method has been tested on 50 real life documents, such as office letters, brochures, and technical papers, scanned at 100/spl times/100 dpi resolution. Regions are detected with about 68% reliability. A critical analysis of the results is presented.</description><subject>Data mining</subject><subject>Graphics</subject><subject>Histograms</subject><subject>Image databases</subject><subject>Image segmentation</subject><subject>Life testing</subject><subject>Microcomputers</subject><subject>Pixel</subject><subject>Process design</subject><subject>World Wide Web</subject><isbn>0780343654</isbn><isbn>9780780343658</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>1997</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNp9jrsOgjAYhZsYE2-8AFNfQGzlPhOMLrowS2r9gZpCTVsG3t4SnT3Ll5wvOTkI-ZQElJL8UJXX4nYNaJ6nQRKlxyxfoA1JMxJGYRJHK-QZ8yIuURzTLFuj-2WwIKVoYbC4E6CZ5p3gTGLJJjVabKDtnWNWqAGrBj8VH-cCi561YLBrbQf4wYwws-dKqlE7uN3B7tCyYdKA9-MW-aeyKs57AQD1W7sRPdXfp-Ff-QEsTkTg</recordid><startdate>1997</startdate><enddate>1997</enddate><creator>Mighlani, D.</creator><creator>Hennig, A.</creator><creator>Sherkat, N.</creator><creator>Whitrow, R.J.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>1997</creationdate><title>Intelligent hierarchical layout segmentation of document images on the basis of colour content</title><author>Mighlani, D. ; Hennig, A. ; Sherkat, N. ; Whitrow, R.J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-ieee_primary_6472893</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>1997</creationdate><topic>Data mining</topic><topic>Graphics</topic><topic>Histograms</topic><topic>Image databases</topic><topic>Image segmentation</topic><topic>Life testing</topic><topic>Microcomputers</topic><topic>Pixel</topic><topic>Process design</topic><topic>World Wide Web</topic><toplevel>online_resources</toplevel><creatorcontrib>Mighlani, D.</creatorcontrib><creatorcontrib>Hennig, A.</creatorcontrib><creatorcontrib>Sherkat, N.</creatorcontrib><creatorcontrib>Whitrow, R.J.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Mighlani, D.</au><au>Hennig, A.</au><au>Sherkat, N.</au><au>Whitrow, R.J.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Intelligent hierarchical layout segmentation of document images on the basis of colour content</atitle><btitle>TENCON '97 Brisbane - Australia. Proceedings of IEEE TENCON '97. IEEE Region 10 Annual Conference. Speech and Image Technologies for Computing and Telecommunications (Cat. No.97CH36162)</btitle><stitle>TENCON</stitle><date>1997</date><risdate>1997</risdate><volume>1</volume><spage>191</spage><epage>194 vol.1</epage><pages>191-194 vol.1</pages><isbn>0780343654</isbn><isbn>9780780343658</isbn><abstract>This paper proposes a general methodology for automatic layout segmentation of documents. We first use colour histograms for extracting dominant colours of an image. This information is then used to hierarchically segment documents into regions of interest represented as polygons. If a region of interest is a picture the algorithm intelligently refrains from segmenting it further, while coloured regions that contain text are subsegmented. The method has been tested on 50 real life documents, such as office letters, brochures, and technical papers, scanned at 100/spl times/100 dpi resolution. Regions are detected with about 68% reliability. A critical analysis of the results is presented.</abstract><pub>IEEE</pub><doi>10.1109/TENCON.1997.647289</doi></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 0780343654
ispartof TENCON '97 Brisbane - Australia. Proceedings of IEEE TENCON '97. IEEE Region 10 Annual Conference. Speech and Image Technologies for Computing and Telecommunications (Cat. No.97CH36162), 1997, Vol.1, p.191-194 vol.1
issn
language eng
recordid cdi_ieee_primary_647289
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Data mining
Graphics
Histograms
Image databases
Image segmentation
Life testing
Microcomputers
Pixel
Process design
World Wide Web
title Intelligent hierarchical layout segmentation of document images on the basis of colour content
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T19%3A31%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Intelligent%20hierarchical%20layout%20segmentation%20of%20document%20images%20on%20the%20basis%20of%20colour%20content&rft.btitle=TENCON%20'97%20Brisbane%20-%20Australia.%20Proceedings%20of%20IEEE%20TENCON%20'97.%20IEEE%20Region%2010%20Annual%20Conference.%20Speech%20and%20Image%20Technologies%20for%20Computing%20and%20Telecommunications%20(Cat.%20No.97CH36162)&rft.au=Mighlani,%20D.&rft.date=1997&rft.volume=1&rft.spage=191&rft.epage=194%20vol.1&rft.pages=191-194%20vol.1&rft.isbn=0780343654&rft.isbn_list=9780780343658&rft_id=info:doi/10.1109/TENCON.1997.647289&rft_dat=%3Cieee_6IE%3E647289%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-ieee_primary_6472893%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=647289&rfr_iscdi=true