Loading…

Development of \hbox\hbox Superconducting Coil Manufacture Technology

The nuclear magnetic resonance superconducting magnet technology is being developed in our laboratory. Because the upper critical magnetic field of NbTi alloy is not high enough, an Nb 3 Sn superconductor has to be used in the manufacture of magnets for 500 MHz and above. In this paper, an experimen...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on applied superconductivity 2013-06, Vol.23 (3), p.4401204-4401204
Main Authors: Junsheng Cheng, Yuanzhong Lei, Chunyan Cui, Lankai Li, Shousen Song, Yi Li, Zhipeng Ni, Shunzhong Chen, Hui Wang, Qiuliang Wang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c624-91f0c273f212ed779c38b38a81055092e8063e93fa97d10d0a1911346ed76653
container_end_page 4401204
container_issue 3
container_start_page 4401204
container_title IEEE transactions on applied superconductivity
container_volume 23
creator Junsheng Cheng
Yuanzhong Lei
Chunyan Cui
Lankai Li
Shousen Song
Yi Li
Zhipeng Ni
Shunzhong Chen
Hui Wang
Qiuliang Wang
description The nuclear magnetic resonance superconducting magnet technology is being developed in our laboratory. Because the upper critical magnetic field of NbTi alloy is not high enough, an Nb 3 Sn superconductor has to be used in the manufacture of magnets for 500 MHz and above. In this paper, an experimental Nb 3 Sn superconducting coil was manufactured to study the fabrication technology. The bobbin with Al 2 O 3 ceramic coating is made of stainless steel. A vertical tube type vacuum heat treatment furnace was established for Nb 3 Sn formation. Heat treatment parameters for the Nb 3 Sn coil were done at 670 ° C in vacuum. Vacuum pressure impregnation was done to strengthen the assembly. The Nb 3 Sn coil, the switch, and the current leads were joined together using superconducting solder matrix replacement method. In the test the maximum current of the Nb 3 Sn coil was 263 A, corresponding to a central magnetic field of 3.47 T. Persistent current mode operation was also successfully performed.
doi_str_mv 10.1109/TASC.2012.2237009
format article
fullrecord <record><control><sourceid>crossref_ieee_</sourceid><recordid>TN_cdi_ieee_primary_6475984</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6475984</ieee_id><sourcerecordid>10_1109_TASC_2012_2237009</sourcerecordid><originalsourceid>FETCH-LOGICAL-c624-91f0c273f212ed779c38b38a81055092e8063e93fa97d10d0a1911346ed76653</originalsourceid><addsrcrecordid>eNo9kN1Kw0AQhRdRsFYfQLzJC6TO7GaT3csS6w9UvGguhbDdzLaRNBvyI_btTWzxZmZgzjkcPsbuERaIoB-z5SZdcEC-4FwkAPqCzVBKFXKJ8nK8QWKoxt81u-m6LwCMVCRnbPVE31T55kB1H3gXfO63_udvBJuhodb6uhhsX9a7IPVlFbybenDG9kNLQUZ2X_vK74637MqZqqO7856zzfMqS1_D9cfLW7pchzbmUajRgeWJcBw5FUmirVBboYway0nQnBTEgrRwRicFQgEGNaKI4lEcx1LMGZ5Sbeu7riWXN215MO0xR8gnCvlEIZ8o5GcKo-fh5CmJ6F8fR4nUKhK_mudYTw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Development of \hbox\hbox Superconducting Coil Manufacture Technology</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Junsheng Cheng ; Yuanzhong Lei ; Chunyan Cui ; Lankai Li ; Shousen Song ; Yi Li ; Zhipeng Ni ; Shunzhong Chen ; Hui Wang ; Qiuliang Wang</creator><creatorcontrib>Junsheng Cheng ; Yuanzhong Lei ; Chunyan Cui ; Lankai Li ; Shousen Song ; Yi Li ; Zhipeng Ni ; Shunzhong Chen ; Hui Wang ; Qiuliang Wang</creatorcontrib><description>The nuclear magnetic resonance superconducting magnet technology is being developed in our laboratory. Because the upper critical magnetic field of NbTi alloy is not high enough, an Nb 3 Sn superconductor has to be used in the manufacture of magnets for 500 MHz and above. In this paper, an experimental Nb 3 Sn superconducting coil was manufactured to study the fabrication technology. The bobbin with Al 2 O 3 ceramic coating is made of stainless steel. A vertical tube type vacuum heat treatment furnace was established for Nb 3 Sn formation. Heat treatment parameters for the Nb 3 Sn coil were done at 670 ° C in vacuum. Vacuum pressure impregnation was done to strengthen the assembly. The Nb 3 Sn coil, the switch, and the current leads were joined together using superconducting solder matrix replacement method. In the test the maximum current of the Nb 3 Sn coil was 263 A, corresponding to a central magnetic field of 3.47 T. Persistent current mode operation was also successfully performed.</description><identifier>ISSN: 1051-8223</identifier><identifier>EISSN: 1558-2515</identifier><identifier>DOI: 10.1109/TASC.2012.2237009</identifier><identifier>CODEN: ITASE9</identifier><language>eng</language><publisher>IEEE</publisher><subject>Epoxy impregnation ; hbox{Nb}_{3}\hbox{Sn} coil ; Heat treatment ; Joints ; Niobium-tin ; Superconducting coils ; superconducting joint ; Superconducting magnets ; Wires</subject><ispartof>IEEE transactions on applied superconductivity, 2013-06, Vol.23 (3), p.4401204-4401204</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c624-91f0c273f212ed779c38b38a81055092e8063e93fa97d10d0a1911346ed76653</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6475984$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,54771</link.rule.ids></links><search><creatorcontrib>Junsheng Cheng</creatorcontrib><creatorcontrib>Yuanzhong Lei</creatorcontrib><creatorcontrib>Chunyan Cui</creatorcontrib><creatorcontrib>Lankai Li</creatorcontrib><creatorcontrib>Shousen Song</creatorcontrib><creatorcontrib>Yi Li</creatorcontrib><creatorcontrib>Zhipeng Ni</creatorcontrib><creatorcontrib>Shunzhong Chen</creatorcontrib><creatorcontrib>Hui Wang</creatorcontrib><creatorcontrib>Qiuliang Wang</creatorcontrib><title>Development of \hbox\hbox Superconducting Coil Manufacture Technology</title><title>IEEE transactions on applied superconductivity</title><addtitle>TASC</addtitle><description>The nuclear magnetic resonance superconducting magnet technology is being developed in our laboratory. Because the upper critical magnetic field of NbTi alloy is not high enough, an Nb 3 Sn superconductor has to be used in the manufacture of magnets for 500 MHz and above. In this paper, an experimental Nb 3 Sn superconducting coil was manufactured to study the fabrication technology. The bobbin with Al 2 O 3 ceramic coating is made of stainless steel. A vertical tube type vacuum heat treatment furnace was established for Nb 3 Sn formation. Heat treatment parameters for the Nb 3 Sn coil were done at 670 ° C in vacuum. Vacuum pressure impregnation was done to strengthen the assembly. The Nb 3 Sn coil, the switch, and the current leads were joined together using superconducting solder matrix replacement method. In the test the maximum current of the Nb 3 Sn coil was 263 A, corresponding to a central magnetic field of 3.47 T. Persistent current mode operation was also successfully performed.</description><subject>Epoxy impregnation</subject><subject>hbox{Nb}_{3}\hbox{Sn} coil</subject><subject>Heat treatment</subject><subject>Joints</subject><subject>Niobium-tin</subject><subject>Superconducting coils</subject><subject>superconducting joint</subject><subject>Superconducting magnets</subject><subject>Wires</subject><issn>1051-8223</issn><issn>1558-2515</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNo9kN1Kw0AQhRdRsFYfQLzJC6TO7GaT3csS6w9UvGguhbDdzLaRNBvyI_btTWzxZmZgzjkcPsbuERaIoB-z5SZdcEC-4FwkAPqCzVBKFXKJ8nK8QWKoxt81u-m6LwCMVCRnbPVE31T55kB1H3gXfO63_udvBJuhodb6uhhsX9a7IPVlFbybenDG9kNLQUZ2X_vK74637MqZqqO7856zzfMqS1_D9cfLW7pchzbmUajRgeWJcBw5FUmirVBboYway0nQnBTEgrRwRicFQgEGNaKI4lEcx1LMGZ5Sbeu7riWXN215MO0xR8gnCvlEIZ8o5GcKo-fh5CmJ6F8fR4nUKhK_mudYTw</recordid><startdate>201306</startdate><enddate>201306</enddate><creator>Junsheng Cheng</creator><creator>Yuanzhong Lei</creator><creator>Chunyan Cui</creator><creator>Lankai Li</creator><creator>Shousen Song</creator><creator>Yi Li</creator><creator>Zhipeng Ni</creator><creator>Shunzhong Chen</creator><creator>Hui Wang</creator><creator>Qiuliang Wang</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>201306</creationdate><title>Development of \hbox\hbox Superconducting Coil Manufacture Technology</title><author>Junsheng Cheng ; Yuanzhong Lei ; Chunyan Cui ; Lankai Li ; Shousen Song ; Yi Li ; Zhipeng Ni ; Shunzhong Chen ; Hui Wang ; Qiuliang Wang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c624-91f0c273f212ed779c38b38a81055092e8063e93fa97d10d0a1911346ed76653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Epoxy impregnation</topic><topic>hbox{Nb}_{3}\hbox{Sn} coil</topic><topic>Heat treatment</topic><topic>Joints</topic><topic>Niobium-tin</topic><topic>Superconducting coils</topic><topic>superconducting joint</topic><topic>Superconducting magnets</topic><topic>Wires</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Junsheng Cheng</creatorcontrib><creatorcontrib>Yuanzhong Lei</creatorcontrib><creatorcontrib>Chunyan Cui</creatorcontrib><creatorcontrib>Lankai Li</creatorcontrib><creatorcontrib>Shousen Song</creatorcontrib><creatorcontrib>Yi Li</creatorcontrib><creatorcontrib>Zhipeng Ni</creatorcontrib><creatorcontrib>Shunzhong Chen</creatorcontrib><creatorcontrib>Hui Wang</creatorcontrib><creatorcontrib>Qiuliang Wang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE transactions on applied superconductivity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Junsheng Cheng</au><au>Yuanzhong Lei</au><au>Chunyan Cui</au><au>Lankai Li</au><au>Shousen Song</au><au>Yi Li</au><au>Zhipeng Ni</au><au>Shunzhong Chen</au><au>Hui Wang</au><au>Qiuliang Wang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Development of \hbox\hbox Superconducting Coil Manufacture Technology</atitle><jtitle>IEEE transactions on applied superconductivity</jtitle><stitle>TASC</stitle><date>2013-06</date><risdate>2013</risdate><volume>23</volume><issue>3</issue><spage>4401204</spage><epage>4401204</epage><pages>4401204-4401204</pages><issn>1051-8223</issn><eissn>1558-2515</eissn><coden>ITASE9</coden><abstract>The nuclear magnetic resonance superconducting magnet technology is being developed in our laboratory. Because the upper critical magnetic field of NbTi alloy is not high enough, an Nb 3 Sn superconductor has to be used in the manufacture of magnets for 500 MHz and above. In this paper, an experimental Nb 3 Sn superconducting coil was manufactured to study the fabrication technology. The bobbin with Al 2 O 3 ceramic coating is made of stainless steel. A vertical tube type vacuum heat treatment furnace was established for Nb 3 Sn formation. Heat treatment parameters for the Nb 3 Sn coil were done at 670 ° C in vacuum. Vacuum pressure impregnation was done to strengthen the assembly. The Nb 3 Sn coil, the switch, and the current leads were joined together using superconducting solder matrix replacement method. In the test the maximum current of the Nb 3 Sn coil was 263 A, corresponding to a central magnetic field of 3.47 T. Persistent current mode operation was also successfully performed.</abstract><pub>IEEE</pub><doi>10.1109/TASC.2012.2237009</doi><tpages>1</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1051-8223
ispartof IEEE transactions on applied superconductivity, 2013-06, Vol.23 (3), p.4401204-4401204
issn 1051-8223
1558-2515
language eng
recordid cdi_ieee_primary_6475984
source IEEE Electronic Library (IEL) Journals
subjects Epoxy impregnation
hbox{Nb}_{3}\hbox{Sn} coil
Heat treatment
Joints
Niobium-tin
Superconducting coils
superconducting joint
Superconducting magnets
Wires
title Development of \hbox\hbox Superconducting Coil Manufacture Technology
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T02%3A43%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Development%20of%20%5Chbox%5Chbox%20Superconducting%20Coil%20Manufacture%20Technology&rft.jtitle=IEEE%20transactions%20on%20applied%20superconductivity&rft.au=Junsheng%20Cheng&rft.date=2013-06&rft.volume=23&rft.issue=3&rft.spage=4401204&rft.epage=4401204&rft.pages=4401204-4401204&rft.issn=1051-8223&rft.eissn=1558-2515&rft.coden=ITASE9&rft_id=info:doi/10.1109/TASC.2012.2237009&rft_dat=%3Ccrossref_ieee_%3E10_1109_TASC_2012_2237009%3C/crossref_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c624-91f0c273f212ed779c38b38a81055092e8063e93fa97d10d0a1911346ed76653%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6475984&rfr_iscdi=true