Loading…
Is strain engineering scalable in FinFET era?: Teaching the old dog some new tricks
S/D epitaxy remains an effective source of strain engineering for both aggressively and conservatively scaled FinFETs. Not merging the S/D epitaxy between adjacent fins and recess etch into the fin before S/D epitaxy is recommended for maximizing the gain. With high active P concentration Si:C becom...
Saved in:
Main Authors: | , , , , , , , , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | S/D epitaxy remains an effective source of strain engineering for both aggressively and conservatively scaled FinFETs. Not merging the S/D epitaxy between adjacent fins and recess etch into the fin before S/D epitaxy is recommended for maximizing the gain. With high active P concentration Si:C becomes an effective stressor for NMOS. Contact and gate metal fills provide new knobs for engineering strain in FinFET devices for the 22nm node and remain effective with conservative scaling of contact / gate CD only. |
---|---|
ISSN: | 0163-1918 2156-017X |
DOI: | 10.1109/IEDM.2012.6479065 |