Loading…

Big Data: Issues and Challenges Moving Forward

Big data refers to data volumes in the range of exabytes (1018) and beyond. Such volumes exceed the capacity of current on-line storage systems and processing systems. Data, information, and knowledge are being created and collected at a rate that is rapidly approaching the exabyte/year range. But,...

Full description

Saved in:
Bibliographic Details
Main Authors: Kaisler, S., Armour, F., Espinosa, J. A., Money, W.
Format: Conference Proceeding
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c265t-51e940ff7d2f13ad0f8d9c57b3da8b892614894311f5fbbbddcea22a199a72cb3
cites
container_end_page 1004
container_issue
container_start_page 995
container_title
container_volume
creator Kaisler, S.
Armour, F.
Espinosa, J. A.
Money, W.
description Big data refers to data volumes in the range of exabytes (1018) and beyond. Such volumes exceed the capacity of current on-line storage systems and processing systems. Data, information, and knowledge are being created and collected at a rate that is rapidly approaching the exabyte/year range. But, its creation and aggregation are accelerating and will approach the zettabyte/year range within a few years. Volume is only one aspect of big data; other attributes are variety, velocity, value, and complexity. Storage and data transport are technology issues, which seem to be solvable in the near-term, but represent longterm challenges that require research and new paradigms. We analyze the issues and challenges as we begin a collaborative research program into methodologies for big data analysis and design.
doi_str_mv 10.1109/HICSS.2013.645
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_6479953</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6479953</ieee_id><sourcerecordid>6479953</sourcerecordid><originalsourceid>FETCH-LOGICAL-c265t-51e940ff7d2f13ad0f8d9c57b3da8b892614894311f5fbbbddcea22a199a72cb3</originalsourceid><addsrcrecordid>eNotjktPhDAURusrkYxs3bjhD4D39vZB3Sk6DskYF6PrSUtbxCBjYNT47yXq6uTLSb4cxs4RCkQwl6u62mwKDkiFEvKApUaXoJWRojQcDlnCpea5KhU_-nUolCZpiPQxS1AS5KhAnrJ0ml4BAIEkkkhYcdO12a3d26usnqaPMGV28Fn1Yvs-DO08H3af3dBmy934ZUd_xk6i7aeQ_nPBnpd3T9UqXz_e19X1Om-4kvtcYjACYtSeRyTrIZbeNFI78rZ0c7HCuVsQYpTROed9EyznFo2xmjeOFuzi77cLIWzfx-7Njt9bJbQxkugHbb9HSw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Big Data: Issues and Challenges Moving Forward</title><source>IEEE Xplore All Conference Series</source><creator>Kaisler, S. ; Armour, F. ; Espinosa, J. A. ; Money, W.</creator><creatorcontrib>Kaisler, S. ; Armour, F. ; Espinosa, J. A. ; Money, W.</creatorcontrib><description>Big data refers to data volumes in the range of exabytes (1018) and beyond. Such volumes exceed the capacity of current on-line storage systems and processing systems. Data, information, and knowledge are being created and collected at a rate that is rapidly approaching the exabyte/year range. But, its creation and aggregation are accelerating and will approach the zettabyte/year range within a few years. Volume is only one aspect of big data; other attributes are variety, velocity, value, and complexity. Storage and data transport are technology issues, which seem to be solvable in the near-term, but represent longterm challenges that require research and new paradigms. We analyze the issues and challenges as we begin a collaborative research program into methodologies for big data analysis and design.</description><identifier>ISSN: 1530-1605</identifier><identifier>ISBN: 9781467359337</identifier><identifier>ISBN: 1467359335</identifier><identifier>EISSN: 2572-6862</identifier><identifier>EISBN: 9780769548920</identifier><identifier>EISBN: 076954892X</identifier><identifier>DOI: 10.1109/HICSS.2013.645</identifier><identifier>CODEN: IEEPAD</identifier><language>eng</language><publisher>IEEE</publisher><subject>Data handling ; Data storage systems ; Distributed databases ; Information management ; Media ; Organizations</subject><ispartof>2013 46th Hawaii International Conference on System Sciences, 2013, p.995-1004</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c265t-51e940ff7d2f13ad0f8d9c57b3da8b892614894311f5fbbbddcea22a199a72cb3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6479953$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54555,54920,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6479953$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Kaisler, S.</creatorcontrib><creatorcontrib>Armour, F.</creatorcontrib><creatorcontrib>Espinosa, J. A.</creatorcontrib><creatorcontrib>Money, W.</creatorcontrib><title>Big Data: Issues and Challenges Moving Forward</title><title>2013 46th Hawaii International Conference on System Sciences</title><addtitle>hicss</addtitle><description>Big data refers to data volumes in the range of exabytes (1018) and beyond. Such volumes exceed the capacity of current on-line storage systems and processing systems. Data, information, and knowledge are being created and collected at a rate that is rapidly approaching the exabyte/year range. But, its creation and aggregation are accelerating and will approach the zettabyte/year range within a few years. Volume is only one aspect of big data; other attributes are variety, velocity, value, and complexity. Storage and data transport are technology issues, which seem to be solvable in the near-term, but represent longterm challenges that require research and new paradigms. We analyze the issues and challenges as we begin a collaborative research program into methodologies for big data analysis and design.</description><subject>Data handling</subject><subject>Data storage systems</subject><subject>Distributed databases</subject><subject>Information management</subject><subject>Media</subject><subject>Organizations</subject><issn>1530-1605</issn><issn>2572-6862</issn><isbn>9781467359337</isbn><isbn>1467359335</isbn><isbn>9780769548920</isbn><isbn>076954892X</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2013</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotjktPhDAURusrkYxs3bjhD4D39vZB3Sk6DskYF6PrSUtbxCBjYNT47yXq6uTLSb4cxs4RCkQwl6u62mwKDkiFEvKApUaXoJWRojQcDlnCpea5KhU_-nUolCZpiPQxS1AS5KhAnrJ0ml4BAIEkkkhYcdO12a3d26usnqaPMGV28Fn1Yvs-DO08H3af3dBmy934ZUd_xk6i7aeQ_nPBnpd3T9UqXz_e19X1Om-4kvtcYjACYtSeRyTrIZbeNFI78rZ0c7HCuVsQYpTROed9EyznFo2xmjeOFuzi77cLIWzfx-7Njt9bJbQxkugHbb9HSw</recordid><startdate>201301</startdate><enddate>201301</enddate><creator>Kaisler, S.</creator><creator>Armour, F.</creator><creator>Espinosa, J. A.</creator><creator>Money, W.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201301</creationdate><title>Big Data: Issues and Challenges Moving Forward</title><author>Kaisler, S. ; Armour, F. ; Espinosa, J. A. ; Money, W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c265t-51e940ff7d2f13ad0f8d9c57b3da8b892614894311f5fbbbddcea22a199a72cb3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Data handling</topic><topic>Data storage systems</topic><topic>Distributed databases</topic><topic>Information management</topic><topic>Media</topic><topic>Organizations</topic><toplevel>online_resources</toplevel><creatorcontrib>Kaisler, S.</creatorcontrib><creatorcontrib>Armour, F.</creatorcontrib><creatorcontrib>Espinosa, J. A.</creatorcontrib><creatorcontrib>Money, W.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kaisler, S.</au><au>Armour, F.</au><au>Espinosa, J. A.</au><au>Money, W.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Big Data: Issues and Challenges Moving Forward</atitle><btitle>2013 46th Hawaii International Conference on System Sciences</btitle><stitle>hicss</stitle><date>2013-01</date><risdate>2013</risdate><spage>995</spage><epage>1004</epage><pages>995-1004</pages><issn>1530-1605</issn><eissn>2572-6862</eissn><isbn>9781467359337</isbn><isbn>1467359335</isbn><eisbn>9780769548920</eisbn><eisbn>076954892X</eisbn><coden>IEEPAD</coden><abstract>Big data refers to data volumes in the range of exabytes (1018) and beyond. Such volumes exceed the capacity of current on-line storage systems and processing systems. Data, information, and knowledge are being created and collected at a rate that is rapidly approaching the exabyte/year range. But, its creation and aggregation are accelerating and will approach the zettabyte/year range within a few years. Volume is only one aspect of big data; other attributes are variety, velocity, value, and complexity. Storage and data transport are technology issues, which seem to be solvable in the near-term, but represent longterm challenges that require research and new paradigms. We analyze the issues and challenges as we begin a collaborative research program into methodologies for big data analysis and design.</abstract><pub>IEEE</pub><doi>10.1109/HICSS.2013.645</doi><tpages>10</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1530-1605
ispartof 2013 46th Hawaii International Conference on System Sciences, 2013, p.995-1004
issn 1530-1605
2572-6862
language eng
recordid cdi_ieee_primary_6479953
source IEEE Xplore All Conference Series
subjects Data handling
Data storage systems
Distributed databases
Information management
Media
Organizations
title Big Data: Issues and Challenges Moving Forward
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T21%3A46%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Big%20Data:%20Issues%20and%20Challenges%20Moving%20Forward&rft.btitle=2013%2046th%20Hawaii%20International%20Conference%20on%20System%20Sciences&rft.au=Kaisler,%20S.&rft.date=2013-01&rft.spage=995&rft.epage=1004&rft.pages=995-1004&rft.issn=1530-1605&rft.eissn=2572-6862&rft.isbn=9781467359337&rft.isbn_list=1467359335&rft.coden=IEEPAD&rft_id=info:doi/10.1109/HICSS.2013.645&rft.eisbn=9780769548920&rft.eisbn_list=076954892X&rft_dat=%3Cieee_CHZPO%3E6479953%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c265t-51e940ff7d2f13ad0f8d9c57b3da8b892614894311f5fbbbddcea22a199a72cb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6479953&rfr_iscdi=true