Loading…
Big Data: Issues and Challenges Moving Forward
Big data refers to data volumes in the range of exabytes (1018) and beyond. Such volumes exceed the capacity of current on-line storage systems and processing systems. Data, information, and knowledge are being created and collected at a rate that is rapidly approaching the exabyte/year range. But,...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c265t-51e940ff7d2f13ad0f8d9c57b3da8b892614894311f5fbbbddcea22a199a72cb3 |
---|---|
cites | |
container_end_page | 1004 |
container_issue | |
container_start_page | 995 |
container_title | |
container_volume | |
creator | Kaisler, S. Armour, F. Espinosa, J. A. Money, W. |
description | Big data refers to data volumes in the range of exabytes (1018) and beyond. Such volumes exceed the capacity of current on-line storage systems and processing systems. Data, information, and knowledge are being created and collected at a rate that is rapidly approaching the exabyte/year range. But, its creation and aggregation are accelerating and will approach the zettabyte/year range within a few years. Volume is only one aspect of big data; other attributes are variety, velocity, value, and complexity. Storage and data transport are technology issues, which seem to be solvable in the near-term, but represent longterm challenges that require research and new paradigms. We analyze the issues and challenges as we begin a collaborative research program into methodologies for big data analysis and design. |
doi_str_mv | 10.1109/HICSS.2013.645 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_6479953</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6479953</ieee_id><sourcerecordid>6479953</sourcerecordid><originalsourceid>FETCH-LOGICAL-c265t-51e940ff7d2f13ad0f8d9c57b3da8b892614894311f5fbbbddcea22a199a72cb3</originalsourceid><addsrcrecordid>eNotjktPhDAURusrkYxs3bjhD4D39vZB3Sk6DskYF6PrSUtbxCBjYNT47yXq6uTLSb4cxs4RCkQwl6u62mwKDkiFEvKApUaXoJWRojQcDlnCpea5KhU_-nUolCZpiPQxS1AS5KhAnrJ0ml4BAIEkkkhYcdO12a3d26usnqaPMGV28Fn1Yvs-DO08H3af3dBmy934ZUd_xk6i7aeQ_nPBnpd3T9UqXz_e19X1Om-4kvtcYjACYtSeRyTrIZbeNFI78rZ0c7HCuVsQYpTROed9EyznFo2xmjeOFuzi77cLIWzfx-7Njt9bJbQxkugHbb9HSw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Big Data: Issues and Challenges Moving Forward</title><source>IEEE Xplore All Conference Series</source><creator>Kaisler, S. ; Armour, F. ; Espinosa, J. A. ; Money, W.</creator><creatorcontrib>Kaisler, S. ; Armour, F. ; Espinosa, J. A. ; Money, W.</creatorcontrib><description>Big data refers to data volumes in the range of exabytes (1018) and beyond. Such volumes exceed the capacity of current on-line storage systems and processing systems. Data, information, and knowledge are being created and collected at a rate that is rapidly approaching the exabyte/year range. But, its creation and aggregation are accelerating and will approach the zettabyte/year range within a few years. Volume is only one aspect of big data; other attributes are variety, velocity, value, and complexity. Storage and data transport are technology issues, which seem to be solvable in the near-term, but represent longterm challenges that require research and new paradigms. We analyze the issues and challenges as we begin a collaborative research program into methodologies for big data analysis and design.</description><identifier>ISSN: 1530-1605</identifier><identifier>ISBN: 9781467359337</identifier><identifier>ISBN: 1467359335</identifier><identifier>EISSN: 2572-6862</identifier><identifier>EISBN: 9780769548920</identifier><identifier>EISBN: 076954892X</identifier><identifier>DOI: 10.1109/HICSS.2013.645</identifier><identifier>CODEN: IEEPAD</identifier><language>eng</language><publisher>IEEE</publisher><subject>Data handling ; Data storage systems ; Distributed databases ; Information management ; Media ; Organizations</subject><ispartof>2013 46th Hawaii International Conference on System Sciences, 2013, p.995-1004</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c265t-51e940ff7d2f13ad0f8d9c57b3da8b892614894311f5fbbbddcea22a199a72cb3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6479953$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54555,54920,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6479953$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Kaisler, S.</creatorcontrib><creatorcontrib>Armour, F.</creatorcontrib><creatorcontrib>Espinosa, J. A.</creatorcontrib><creatorcontrib>Money, W.</creatorcontrib><title>Big Data: Issues and Challenges Moving Forward</title><title>2013 46th Hawaii International Conference on System Sciences</title><addtitle>hicss</addtitle><description>Big data refers to data volumes in the range of exabytes (1018) and beyond. Such volumes exceed the capacity of current on-line storage systems and processing systems. Data, information, and knowledge are being created and collected at a rate that is rapidly approaching the exabyte/year range. But, its creation and aggregation are accelerating and will approach the zettabyte/year range within a few years. Volume is only one aspect of big data; other attributes are variety, velocity, value, and complexity. Storage and data transport are technology issues, which seem to be solvable in the near-term, but represent longterm challenges that require research and new paradigms. We analyze the issues and challenges as we begin a collaborative research program into methodologies for big data analysis and design.</description><subject>Data handling</subject><subject>Data storage systems</subject><subject>Distributed databases</subject><subject>Information management</subject><subject>Media</subject><subject>Organizations</subject><issn>1530-1605</issn><issn>2572-6862</issn><isbn>9781467359337</isbn><isbn>1467359335</isbn><isbn>9780769548920</isbn><isbn>076954892X</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2013</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotjktPhDAURusrkYxs3bjhD4D39vZB3Sk6DskYF6PrSUtbxCBjYNT47yXq6uTLSb4cxs4RCkQwl6u62mwKDkiFEvKApUaXoJWRojQcDlnCpea5KhU_-nUolCZpiPQxS1AS5KhAnrJ0ml4BAIEkkkhYcdO12a3d26usnqaPMGV28Fn1Yvs-DO08H3af3dBmy934ZUd_xk6i7aeQ_nPBnpd3T9UqXz_e19X1Om-4kvtcYjACYtSeRyTrIZbeNFI78rZ0c7HCuVsQYpTROed9EyznFo2xmjeOFuzi77cLIWzfx-7Njt9bJbQxkugHbb9HSw</recordid><startdate>201301</startdate><enddate>201301</enddate><creator>Kaisler, S.</creator><creator>Armour, F.</creator><creator>Espinosa, J. A.</creator><creator>Money, W.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201301</creationdate><title>Big Data: Issues and Challenges Moving Forward</title><author>Kaisler, S. ; Armour, F. ; Espinosa, J. A. ; Money, W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c265t-51e940ff7d2f13ad0f8d9c57b3da8b892614894311f5fbbbddcea22a199a72cb3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Data handling</topic><topic>Data storage systems</topic><topic>Distributed databases</topic><topic>Information management</topic><topic>Media</topic><topic>Organizations</topic><toplevel>online_resources</toplevel><creatorcontrib>Kaisler, S.</creatorcontrib><creatorcontrib>Armour, F.</creatorcontrib><creatorcontrib>Espinosa, J. A.</creatorcontrib><creatorcontrib>Money, W.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kaisler, S.</au><au>Armour, F.</au><au>Espinosa, J. A.</au><au>Money, W.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Big Data: Issues and Challenges Moving Forward</atitle><btitle>2013 46th Hawaii International Conference on System Sciences</btitle><stitle>hicss</stitle><date>2013-01</date><risdate>2013</risdate><spage>995</spage><epage>1004</epage><pages>995-1004</pages><issn>1530-1605</issn><eissn>2572-6862</eissn><isbn>9781467359337</isbn><isbn>1467359335</isbn><eisbn>9780769548920</eisbn><eisbn>076954892X</eisbn><coden>IEEPAD</coden><abstract>Big data refers to data volumes in the range of exabytes (1018) and beyond. Such volumes exceed the capacity of current on-line storage systems and processing systems. Data, information, and knowledge are being created and collected at a rate that is rapidly approaching the exabyte/year range. But, its creation and aggregation are accelerating and will approach the zettabyte/year range within a few years. Volume is only one aspect of big data; other attributes are variety, velocity, value, and complexity. Storage and data transport are technology issues, which seem to be solvable in the near-term, but represent longterm challenges that require research and new paradigms. We analyze the issues and challenges as we begin a collaborative research program into methodologies for big data analysis and design.</abstract><pub>IEEE</pub><doi>10.1109/HICSS.2013.645</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1530-1605 |
ispartof | 2013 46th Hawaii International Conference on System Sciences, 2013, p.995-1004 |
issn | 1530-1605 2572-6862 |
language | eng |
recordid | cdi_ieee_primary_6479953 |
source | IEEE Xplore All Conference Series |
subjects | Data handling Data storage systems Distributed databases Information management Media Organizations |
title | Big Data: Issues and Challenges Moving Forward |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T21%3A46%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Big%20Data:%20Issues%20and%20Challenges%20Moving%20Forward&rft.btitle=2013%2046th%20Hawaii%20International%20Conference%20on%20System%20Sciences&rft.au=Kaisler,%20S.&rft.date=2013-01&rft.spage=995&rft.epage=1004&rft.pages=995-1004&rft.issn=1530-1605&rft.eissn=2572-6862&rft.isbn=9781467359337&rft.isbn_list=1467359335&rft.coden=IEEPAD&rft_id=info:doi/10.1109/HICSS.2013.645&rft.eisbn=9780769548920&rft.eisbn_list=076954892X&rft_dat=%3Cieee_CHZPO%3E6479953%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c265t-51e940ff7d2f13ad0f8d9c57b3da8b892614894311f5fbbbddcea22a199a72cb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6479953&rfr_iscdi=true |