Loading…
Subspace modeling technique using monophones for speech recognition
In this paper we propose an adaptive training method for parameter estimation of acoustic models in the speech recognition system. Our technique is inspired from the Cluster Adaptive Training (CAT) method which is used for rapid speaker adaptation. Instead of adapting the model to a speaker as in CA...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 5 |
container_issue | |
container_start_page | 1 |
container_title | |
container_volume | |
creator | Ch, cBhargav Srinivas Joy, cNeethu Mariam Bilgi, cRaghavendra R. Umesh, cS |
description | In this paper we propose an adaptive training method for parameter estimation of acoustic models in the speech recognition system. Our technique is inspired from the Cluster Adaptive Training (CAT) method which is used for rapid speaker adaptation. Instead of adapting the model to a speaker as in CAT, we adapt the parameters of the context dependent triphone states (tied states) from context independent states (monophones). This is achieved by finding a global mapping of parameters of the tied state from the parametric subspace of monophone models. This technique is similar to Subspace Gaussian Mixture Model (SGMM), but differs in the initialization of parameters and in the update of weights of Gaussian mixture components. We show that, the proposed method can match the performance of the conventional HMM system for large amount of training data and outperforms it when the number of training examples are less. |
doi_str_mv | 10.1109/NCC.2013.6487994 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6487994</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6487994</ieee_id><sourcerecordid>6487994</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-a8e9d711d31ead92e1e47d8015c54a880a04f8643ba7acd00f19882345e6aec33</originalsourceid><addsrcrecordid>eNo1j81KxDAYRSMiqGP3gpu8wNR8zf9Sin8w6EJdD5nk60xkmtSmXfj2jjiuLgfuuXAJuQZWAzB7-9K2dcOA10oYba04IZcglObSygZOSWW1-WcmzklVyidj7KAqkOqCtG_zpgzOI-1zwH1MWzqh36X4NSOdyy_3OeVhlxMW2uWRlgEPBTqiz9sUp5jTFTnr3L5gdcwF-Xi4f2-flqvXx-f2brWMoOW0dAZt0ACBA7pgGwQUOhgG0kvhjGGOic4owTdOOx8Y68Aa03AhUTn0nC_Izd9uRMT1MMbejd_r42_-AwNkTAU</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Subspace modeling technique using monophones for speech recognition</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Ch, cBhargav Srinivas ; Joy, cNeethu Mariam ; Bilgi, cRaghavendra R. ; Umesh, cS</creator><creatorcontrib>Ch, cBhargav Srinivas ; Joy, cNeethu Mariam ; Bilgi, cRaghavendra R. ; Umesh, cS</creatorcontrib><description>In this paper we propose an adaptive training method for parameter estimation of acoustic models in the speech recognition system. Our technique is inspired from the Cluster Adaptive Training (CAT) method which is used for rapid speaker adaptation. Instead of adapting the model to a speaker as in CAT, we adapt the parameters of the context dependent triphone states (tied states) from context independent states (monophones). This is achieved by finding a global mapping of parameters of the tied state from the parametric subspace of monophone models. This technique is similar to Subspace Gaussian Mixture Model (SGMM), but differs in the initialization of parameters and in the update of weights of Gaussian mixture components. We show that, the proposed method can match the performance of the conventional HMM system for large amount of training data and outperforms it when the number of training examples are less.</description><identifier>ISBN: 9781467359504</identifier><identifier>ISBN: 1467359505</identifier><identifier>EISBN: 1467359521</identifier><identifier>EISBN: 9781467359511</identifier><identifier>EISBN: 9781467359528</identifier><identifier>EISBN: 1467359513</identifier><identifier>DOI: 10.1109/NCC.2013.6487994</identifier><language>eng</language><publisher>IEEE</publisher><subject>Acoustics ; Adaptation models ; adaptive training ; Context modeling ; Data models ; Hidden Markov models ; Speech recognition ; subspace modeling ; Training ; Vectors</subject><ispartof>2013 National Conference on Communications (NCC), 2013, p.1-5</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6487994$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6487994$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ch, cBhargav Srinivas</creatorcontrib><creatorcontrib>Joy, cNeethu Mariam</creatorcontrib><creatorcontrib>Bilgi, cRaghavendra R.</creatorcontrib><creatorcontrib>Umesh, cS</creatorcontrib><title>Subspace modeling technique using monophones for speech recognition</title><title>2013 National Conference on Communications (NCC)</title><addtitle>NCC</addtitle><description>In this paper we propose an adaptive training method for parameter estimation of acoustic models in the speech recognition system. Our technique is inspired from the Cluster Adaptive Training (CAT) method which is used for rapid speaker adaptation. Instead of adapting the model to a speaker as in CAT, we adapt the parameters of the context dependent triphone states (tied states) from context independent states (monophones). This is achieved by finding a global mapping of parameters of the tied state from the parametric subspace of monophone models. This technique is similar to Subspace Gaussian Mixture Model (SGMM), but differs in the initialization of parameters and in the update of weights of Gaussian mixture components. We show that, the proposed method can match the performance of the conventional HMM system for large amount of training data and outperforms it when the number of training examples are less.</description><subject>Acoustics</subject><subject>Adaptation models</subject><subject>adaptive training</subject><subject>Context modeling</subject><subject>Data models</subject><subject>Hidden Markov models</subject><subject>Speech recognition</subject><subject>subspace modeling</subject><subject>Training</subject><subject>Vectors</subject><isbn>9781467359504</isbn><isbn>1467359505</isbn><isbn>1467359521</isbn><isbn>9781467359511</isbn><isbn>9781467359528</isbn><isbn>1467359513</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2013</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo1j81KxDAYRSMiqGP3gpu8wNR8zf9Sin8w6EJdD5nk60xkmtSmXfj2jjiuLgfuuXAJuQZWAzB7-9K2dcOA10oYba04IZcglObSygZOSWW1-WcmzklVyidj7KAqkOqCtG_zpgzOI-1zwH1MWzqh36X4NSOdyy_3OeVhlxMW2uWRlgEPBTqiz9sUp5jTFTnr3L5gdcwF-Xi4f2-flqvXx-f2brWMoOW0dAZt0ACBA7pgGwQUOhgG0kvhjGGOic4owTdOOx8Y68Aa03AhUTn0nC_Izd9uRMT1MMbejd_r42_-AwNkTAU</recordid><startdate>201302</startdate><enddate>201302</enddate><creator>Ch, cBhargav Srinivas</creator><creator>Joy, cNeethu Mariam</creator><creator>Bilgi, cRaghavendra R.</creator><creator>Umesh, cS</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201302</creationdate><title>Subspace modeling technique using monophones for speech recognition</title><author>Ch, cBhargav Srinivas ; Joy, cNeethu Mariam ; Bilgi, cRaghavendra R. ; Umesh, cS</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-a8e9d711d31ead92e1e47d8015c54a880a04f8643ba7acd00f19882345e6aec33</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Acoustics</topic><topic>Adaptation models</topic><topic>adaptive training</topic><topic>Context modeling</topic><topic>Data models</topic><topic>Hidden Markov models</topic><topic>Speech recognition</topic><topic>subspace modeling</topic><topic>Training</topic><topic>Vectors</topic><toplevel>online_resources</toplevel><creatorcontrib>Ch, cBhargav Srinivas</creatorcontrib><creatorcontrib>Joy, cNeethu Mariam</creatorcontrib><creatorcontrib>Bilgi, cRaghavendra R.</creatorcontrib><creatorcontrib>Umesh, cS</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEL</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ch, cBhargav Srinivas</au><au>Joy, cNeethu Mariam</au><au>Bilgi, cRaghavendra R.</au><au>Umesh, cS</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Subspace modeling technique using monophones for speech recognition</atitle><btitle>2013 National Conference on Communications (NCC)</btitle><stitle>NCC</stitle><date>2013-02</date><risdate>2013</risdate><spage>1</spage><epage>5</epage><pages>1-5</pages><isbn>9781467359504</isbn><isbn>1467359505</isbn><eisbn>1467359521</eisbn><eisbn>9781467359511</eisbn><eisbn>9781467359528</eisbn><eisbn>1467359513</eisbn><abstract>In this paper we propose an adaptive training method for parameter estimation of acoustic models in the speech recognition system. Our technique is inspired from the Cluster Adaptive Training (CAT) method which is used for rapid speaker adaptation. Instead of adapting the model to a speaker as in CAT, we adapt the parameters of the context dependent triphone states (tied states) from context independent states (monophones). This is achieved by finding a global mapping of parameters of the tied state from the parametric subspace of monophone models. This technique is similar to Subspace Gaussian Mixture Model (SGMM), but differs in the initialization of parameters and in the update of weights of Gaussian mixture components. We show that, the proposed method can match the performance of the conventional HMM system for large amount of training data and outperforms it when the number of training examples are less.</abstract><pub>IEEE</pub><doi>10.1109/NCC.2013.6487994</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 9781467359504 |
ispartof | 2013 National Conference on Communications (NCC), 2013, p.1-5 |
issn | |
language | eng |
recordid | cdi_ieee_primary_6487994 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Acoustics Adaptation models adaptive training Context modeling Data models Hidden Markov models Speech recognition subspace modeling Training Vectors |
title | Subspace modeling technique using monophones for speech recognition |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T02%3A00%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Subspace%20modeling%20technique%20using%20monophones%20for%20speech%20recognition&rft.btitle=2013%20National%20Conference%20on%20Communications%20(NCC)&rft.au=Ch,%20cBhargav%20Srinivas&rft.date=2013-02&rft.spage=1&rft.epage=5&rft.pages=1-5&rft.isbn=9781467359504&rft.isbn_list=1467359505&rft_id=info:doi/10.1109/NCC.2013.6487994&rft.eisbn=1467359521&rft.eisbn_list=9781467359511&rft.eisbn_list=9781467359528&rft.eisbn_list=1467359513&rft_dat=%3Cieee_6IE%3E6487994%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-a8e9d711d31ead92e1e47d8015c54a880a04f8643ba7acd00f19882345e6aec33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6487994&rfr_iscdi=true |