Loading…

Subspace modeling technique using monophones for speech recognition

In this paper we propose an adaptive training method for parameter estimation of acoustic models in the speech recognition system. Our technique is inspired from the Cluster Adaptive Training (CAT) method which is used for rapid speaker adaptation. Instead of adapting the model to a speaker as in CA...

Full description

Saved in:
Bibliographic Details
Main Authors: Ch, cBhargav Srinivas, Joy, cNeethu Mariam, Bilgi, cRaghavendra R., Umesh, cS
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 5
container_issue
container_start_page 1
container_title
container_volume
creator Ch, cBhargav Srinivas
Joy, cNeethu Mariam
Bilgi, cRaghavendra R.
Umesh, cS
description In this paper we propose an adaptive training method for parameter estimation of acoustic models in the speech recognition system. Our technique is inspired from the Cluster Adaptive Training (CAT) method which is used for rapid speaker adaptation. Instead of adapting the model to a speaker as in CAT, we adapt the parameters of the context dependent triphone states (tied states) from context independent states (monophones). This is achieved by finding a global mapping of parameters of the tied state from the parametric subspace of monophone models. This technique is similar to Subspace Gaussian Mixture Model (SGMM), but differs in the initialization of parameters and in the update of weights of Gaussian mixture components. We show that, the proposed method can match the performance of the conventional HMM system for large amount of training data and outperforms it when the number of training examples are less.
doi_str_mv 10.1109/NCC.2013.6487994
format conference_proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6487994</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6487994</ieee_id><sourcerecordid>6487994</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-a8e9d711d31ead92e1e47d8015c54a880a04f8643ba7acd00f19882345e6aec33</originalsourceid><addsrcrecordid>eNo1j81KxDAYRSMiqGP3gpu8wNR8zf9Sin8w6EJdD5nk60xkmtSmXfj2jjiuLgfuuXAJuQZWAzB7-9K2dcOA10oYba04IZcglObSygZOSWW1-WcmzklVyidj7KAqkOqCtG_zpgzOI-1zwH1MWzqh36X4NSOdyy_3OeVhlxMW2uWRlgEPBTqiz9sUp5jTFTnr3L5gdcwF-Xi4f2-flqvXx-f2brWMoOW0dAZt0ACBA7pgGwQUOhgG0kvhjGGOic4owTdOOx8Y68Aa03AhUTn0nC_Izd9uRMT1MMbejd_r42_-AwNkTAU</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Subspace modeling technique using monophones for speech recognition</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Ch, cBhargav Srinivas ; Joy, cNeethu Mariam ; Bilgi, cRaghavendra R. ; Umesh, cS</creator><creatorcontrib>Ch, cBhargav Srinivas ; Joy, cNeethu Mariam ; Bilgi, cRaghavendra R. ; Umesh, cS</creatorcontrib><description>In this paper we propose an adaptive training method for parameter estimation of acoustic models in the speech recognition system. Our technique is inspired from the Cluster Adaptive Training (CAT) method which is used for rapid speaker adaptation. Instead of adapting the model to a speaker as in CAT, we adapt the parameters of the context dependent triphone states (tied states) from context independent states (monophones). This is achieved by finding a global mapping of parameters of the tied state from the parametric subspace of monophone models. This technique is similar to Subspace Gaussian Mixture Model (SGMM), but differs in the initialization of parameters and in the update of weights of Gaussian mixture components. We show that, the proposed method can match the performance of the conventional HMM system for large amount of training data and outperforms it when the number of training examples are less.</description><identifier>ISBN: 9781467359504</identifier><identifier>ISBN: 1467359505</identifier><identifier>EISBN: 1467359521</identifier><identifier>EISBN: 9781467359511</identifier><identifier>EISBN: 9781467359528</identifier><identifier>EISBN: 1467359513</identifier><identifier>DOI: 10.1109/NCC.2013.6487994</identifier><language>eng</language><publisher>IEEE</publisher><subject>Acoustics ; Adaptation models ; adaptive training ; Context modeling ; Data models ; Hidden Markov models ; Speech recognition ; subspace modeling ; Training ; Vectors</subject><ispartof>2013 National Conference on Communications (NCC), 2013, p.1-5</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6487994$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6487994$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ch, cBhargav Srinivas</creatorcontrib><creatorcontrib>Joy, cNeethu Mariam</creatorcontrib><creatorcontrib>Bilgi, cRaghavendra R.</creatorcontrib><creatorcontrib>Umesh, cS</creatorcontrib><title>Subspace modeling technique using monophones for speech recognition</title><title>2013 National Conference on Communications (NCC)</title><addtitle>NCC</addtitle><description>In this paper we propose an adaptive training method for parameter estimation of acoustic models in the speech recognition system. Our technique is inspired from the Cluster Adaptive Training (CAT) method which is used for rapid speaker adaptation. Instead of adapting the model to a speaker as in CAT, we adapt the parameters of the context dependent triphone states (tied states) from context independent states (monophones). This is achieved by finding a global mapping of parameters of the tied state from the parametric subspace of monophone models. This technique is similar to Subspace Gaussian Mixture Model (SGMM), but differs in the initialization of parameters and in the update of weights of Gaussian mixture components. We show that, the proposed method can match the performance of the conventional HMM system for large amount of training data and outperforms it when the number of training examples are less.</description><subject>Acoustics</subject><subject>Adaptation models</subject><subject>adaptive training</subject><subject>Context modeling</subject><subject>Data models</subject><subject>Hidden Markov models</subject><subject>Speech recognition</subject><subject>subspace modeling</subject><subject>Training</subject><subject>Vectors</subject><isbn>9781467359504</isbn><isbn>1467359505</isbn><isbn>1467359521</isbn><isbn>9781467359511</isbn><isbn>9781467359528</isbn><isbn>1467359513</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2013</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo1j81KxDAYRSMiqGP3gpu8wNR8zf9Sin8w6EJdD5nk60xkmtSmXfj2jjiuLgfuuXAJuQZWAzB7-9K2dcOA10oYba04IZcglObSygZOSWW1-WcmzklVyidj7KAqkOqCtG_zpgzOI-1zwH1MWzqh36X4NSOdyy_3OeVhlxMW2uWRlgEPBTqiz9sUp5jTFTnr3L5gdcwF-Xi4f2-flqvXx-f2brWMoOW0dAZt0ACBA7pgGwQUOhgG0kvhjGGOic4owTdOOx8Y68Aa03AhUTn0nC_Izd9uRMT1MMbejd_r42_-AwNkTAU</recordid><startdate>201302</startdate><enddate>201302</enddate><creator>Ch, cBhargav Srinivas</creator><creator>Joy, cNeethu Mariam</creator><creator>Bilgi, cRaghavendra R.</creator><creator>Umesh, cS</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201302</creationdate><title>Subspace modeling technique using monophones for speech recognition</title><author>Ch, cBhargav Srinivas ; Joy, cNeethu Mariam ; Bilgi, cRaghavendra R. ; Umesh, cS</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-a8e9d711d31ead92e1e47d8015c54a880a04f8643ba7acd00f19882345e6aec33</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Acoustics</topic><topic>Adaptation models</topic><topic>adaptive training</topic><topic>Context modeling</topic><topic>Data models</topic><topic>Hidden Markov models</topic><topic>Speech recognition</topic><topic>subspace modeling</topic><topic>Training</topic><topic>Vectors</topic><toplevel>online_resources</toplevel><creatorcontrib>Ch, cBhargav Srinivas</creatorcontrib><creatorcontrib>Joy, cNeethu Mariam</creatorcontrib><creatorcontrib>Bilgi, cRaghavendra R.</creatorcontrib><creatorcontrib>Umesh, cS</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEL</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ch, cBhargav Srinivas</au><au>Joy, cNeethu Mariam</au><au>Bilgi, cRaghavendra R.</au><au>Umesh, cS</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Subspace modeling technique using monophones for speech recognition</atitle><btitle>2013 National Conference on Communications (NCC)</btitle><stitle>NCC</stitle><date>2013-02</date><risdate>2013</risdate><spage>1</spage><epage>5</epage><pages>1-5</pages><isbn>9781467359504</isbn><isbn>1467359505</isbn><eisbn>1467359521</eisbn><eisbn>9781467359511</eisbn><eisbn>9781467359528</eisbn><eisbn>1467359513</eisbn><abstract>In this paper we propose an adaptive training method for parameter estimation of acoustic models in the speech recognition system. Our technique is inspired from the Cluster Adaptive Training (CAT) method which is used for rapid speaker adaptation. Instead of adapting the model to a speaker as in CAT, we adapt the parameters of the context dependent triphone states (tied states) from context independent states (monophones). This is achieved by finding a global mapping of parameters of the tied state from the parametric subspace of monophone models. This technique is similar to Subspace Gaussian Mixture Model (SGMM), but differs in the initialization of parameters and in the update of weights of Gaussian mixture components. We show that, the proposed method can match the performance of the conventional HMM system for large amount of training data and outperforms it when the number of training examples are less.</abstract><pub>IEEE</pub><doi>10.1109/NCC.2013.6487994</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9781467359504
ispartof 2013 National Conference on Communications (NCC), 2013, p.1-5
issn
language eng
recordid cdi_ieee_primary_6487994
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Acoustics
Adaptation models
adaptive training
Context modeling
Data models
Hidden Markov models
Speech recognition
subspace modeling
Training
Vectors
title Subspace modeling technique using monophones for speech recognition
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T02%3A00%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Subspace%20modeling%20technique%20using%20monophones%20for%20speech%20recognition&rft.btitle=2013%20National%20Conference%20on%20Communications%20(NCC)&rft.au=Ch,%20cBhargav%20Srinivas&rft.date=2013-02&rft.spage=1&rft.epage=5&rft.pages=1-5&rft.isbn=9781467359504&rft.isbn_list=1467359505&rft_id=info:doi/10.1109/NCC.2013.6487994&rft.eisbn=1467359521&rft.eisbn_list=9781467359511&rft.eisbn_list=9781467359528&rft.eisbn_list=1467359513&rft_dat=%3Cieee_6IE%3E6487994%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-a8e9d711d31ead92e1e47d8015c54a880a04f8643ba7acd00f19882345e6aec33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6487994&rfr_iscdi=true