Loading…
Algorithms for change detection with unknown number of affected sensors
In this paper, we consider change detection in a sensor network where an unknown subset of sensor nodes are affected by the change. We consider two models for the channel between the sensors and the fusion center: (1) parallel non-interfering channels, and (2) physical layer fusion. For both these m...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 5 |
container_issue | |
container_start_page | 1 |
container_title | |
container_volume | |
creator | Sarath Kumar, P Sai Kiran, B Kannu, Arun Pachai Bhashyam, Srikrishna |
description | In this paper, we consider change detection in a sensor network where an unknown subset of sensor nodes are affected by the change. We consider two models for the channel between the sensors and the fusion center: (1) parallel non-interfering channels, and (2) physical layer fusion. For both these models, we propose quantized transmission schemes for the sensors and corresponding fusion rules at the fusion center. The proposed fusion rules are based on an adaptive version of CUSUM. The detection delay performance of the proposed schemes is studied as a function of the number of affected sensors for a given false alarm constraint. Simulation results show that the proposed schemes can work well for a wide range of the fraction of affected sensors. |
doi_str_mv | 10.1109/NCC.2013.6488004 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6488004</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6488004</ieee_id><sourcerecordid>6488004</sourcerecordid><originalsourceid>FETCH-LOGICAL-i217t-87fa2b85555c9558d270a196b4dffb7c0b44024f554c59b37f3009959807b4093</originalsourceid><addsrcrecordid>eNo1T0tLAzEYjIig1r0LXvIHdv3y2iTHsmgrFL3ouSTZpF3tJpJsKf57F6xzGYZ5wCB0T6AhBPTja9c1FAhrWq4UAL9At4S3kgktKLlElZbqXwO_RlUpnwAwV1si2hu0Wh52KQ_Tfiw4pIzd3sSdx72fvJuGFPFp9vAxfsV0ijgeR-szTgGbEOaA73HxsaRc7tBVMIfiqzMv0Mfz03u3rjdvq5duuakHSuRUKxkMtUrMcFoI1VMJhujW8j4EKx1YzoHyIAR3QlsmAwPQWmgF0nLQbIEe_nYH7_32Ow-jyT_b83f2C-Q0S_s</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Algorithms for change detection with unknown number of affected sensors</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Sarath Kumar, P ; Sai Kiran, B ; Kannu, Arun Pachai ; Bhashyam, Srikrishna</creator><creatorcontrib>Sarath Kumar, P ; Sai Kiran, B ; Kannu, Arun Pachai ; Bhashyam, Srikrishna</creatorcontrib><description>In this paper, we consider change detection in a sensor network where an unknown subset of sensor nodes are affected by the change. We consider two models for the channel between the sensors and the fusion center: (1) parallel non-interfering channels, and (2) physical layer fusion. For both these models, we propose quantized transmission schemes for the sensors and corresponding fusion rules at the fusion center. The proposed fusion rules are based on an adaptive version of CUSUM. The detection delay performance of the proposed schemes is studied as a function of the number of affected sensors for a given false alarm constraint. Simulation results show that the proposed schemes can work well for a wide range of the fraction of affected sensors.</description><identifier>ISBN: 9781467359504</identifier><identifier>ISBN: 1467359505</identifier><identifier>EISBN: 1467359521</identifier><identifier>EISBN: 9781467359511</identifier><identifier>EISBN: 9781467359528</identifier><identifier>EISBN: 1467359513</identifier><identifier>DOI: 10.1109/NCC.2013.6488004</identifier><language>eng</language><publisher>IEEE</publisher><subject>Adaptation models ; Adaptive CUSUM ; change detection ; CUSUM ; Delays ; Physical layer ; Quantization (signal) ; Sensor fusion ; sensor networks</subject><ispartof>2013 National Conference on Communications (NCC), 2013, p.1-5</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6488004$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6488004$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Sarath Kumar, P</creatorcontrib><creatorcontrib>Sai Kiran, B</creatorcontrib><creatorcontrib>Kannu, Arun Pachai</creatorcontrib><creatorcontrib>Bhashyam, Srikrishna</creatorcontrib><title>Algorithms for change detection with unknown number of affected sensors</title><title>2013 National Conference on Communications (NCC)</title><addtitle>NCC</addtitle><description>In this paper, we consider change detection in a sensor network where an unknown subset of sensor nodes are affected by the change. We consider two models for the channel between the sensors and the fusion center: (1) parallel non-interfering channels, and (2) physical layer fusion. For both these models, we propose quantized transmission schemes for the sensors and corresponding fusion rules at the fusion center. The proposed fusion rules are based on an adaptive version of CUSUM. The detection delay performance of the proposed schemes is studied as a function of the number of affected sensors for a given false alarm constraint. Simulation results show that the proposed schemes can work well for a wide range of the fraction of affected sensors.</description><subject>Adaptation models</subject><subject>Adaptive CUSUM</subject><subject>change detection</subject><subject>CUSUM</subject><subject>Delays</subject><subject>Physical layer</subject><subject>Quantization (signal)</subject><subject>Sensor fusion</subject><subject>sensor networks</subject><isbn>9781467359504</isbn><isbn>1467359505</isbn><isbn>1467359521</isbn><isbn>9781467359511</isbn><isbn>9781467359528</isbn><isbn>1467359513</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2013</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo1T0tLAzEYjIig1r0LXvIHdv3y2iTHsmgrFL3ouSTZpF3tJpJsKf57F6xzGYZ5wCB0T6AhBPTja9c1FAhrWq4UAL9At4S3kgktKLlElZbqXwO_RlUpnwAwV1si2hu0Wh52KQ_Tfiw4pIzd3sSdx72fvJuGFPFp9vAxfsV0ijgeR-szTgGbEOaA73HxsaRc7tBVMIfiqzMv0Mfz03u3rjdvq5duuakHSuRUKxkMtUrMcFoI1VMJhujW8j4EKx1YzoHyIAR3QlsmAwPQWmgF0nLQbIEe_nYH7_32Ow-jyT_b83f2C-Q0S_s</recordid><startdate>20130101</startdate><enddate>20130101</enddate><creator>Sarath Kumar, P</creator><creator>Sai Kiran, B</creator><creator>Kannu, Arun Pachai</creator><creator>Bhashyam, Srikrishna</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20130101</creationdate><title>Algorithms for change detection with unknown number of affected sensors</title><author>Sarath Kumar, P ; Sai Kiran, B ; Kannu, Arun Pachai ; Bhashyam, Srikrishna</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i217t-87fa2b85555c9558d270a196b4dffb7c0b44024f554c59b37f3009959807b4093</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Adaptation models</topic><topic>Adaptive CUSUM</topic><topic>change detection</topic><topic>CUSUM</topic><topic>Delays</topic><topic>Physical layer</topic><topic>Quantization (signal)</topic><topic>Sensor fusion</topic><topic>sensor networks</topic><toplevel>online_resources</toplevel><creatorcontrib>Sarath Kumar, P</creatorcontrib><creatorcontrib>Sai Kiran, B</creatorcontrib><creatorcontrib>Kannu, Arun Pachai</creatorcontrib><creatorcontrib>Bhashyam, Srikrishna</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEL</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Sarath Kumar, P</au><au>Sai Kiran, B</au><au>Kannu, Arun Pachai</au><au>Bhashyam, Srikrishna</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Algorithms for change detection with unknown number of affected sensors</atitle><btitle>2013 National Conference on Communications (NCC)</btitle><stitle>NCC</stitle><date>2013-01-01</date><risdate>2013</risdate><spage>1</spage><epage>5</epage><pages>1-5</pages><isbn>9781467359504</isbn><isbn>1467359505</isbn><eisbn>1467359521</eisbn><eisbn>9781467359511</eisbn><eisbn>9781467359528</eisbn><eisbn>1467359513</eisbn><abstract>In this paper, we consider change detection in a sensor network where an unknown subset of sensor nodes are affected by the change. We consider two models for the channel between the sensors and the fusion center: (1) parallel non-interfering channels, and (2) physical layer fusion. For both these models, we propose quantized transmission schemes for the sensors and corresponding fusion rules at the fusion center. The proposed fusion rules are based on an adaptive version of CUSUM. The detection delay performance of the proposed schemes is studied as a function of the number of affected sensors for a given false alarm constraint. Simulation results show that the proposed schemes can work well for a wide range of the fraction of affected sensors.</abstract><pub>IEEE</pub><doi>10.1109/NCC.2013.6488004</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 9781467359504 |
ispartof | 2013 National Conference on Communications (NCC), 2013, p.1-5 |
issn | |
language | eng |
recordid | cdi_ieee_primary_6488004 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Adaptation models Adaptive CUSUM change detection CUSUM Delays Physical layer Quantization (signal) Sensor fusion sensor networks |
title | Algorithms for change detection with unknown number of affected sensors |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T09%3A15%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Algorithms%20for%20change%20detection%20with%20unknown%20number%20of%20affected%20sensors&rft.btitle=2013%20National%20Conference%20on%20Communications%20(NCC)&rft.au=Sarath%20Kumar,%20P&rft.date=2013-01-01&rft.spage=1&rft.epage=5&rft.pages=1-5&rft.isbn=9781467359504&rft.isbn_list=1467359505&rft_id=info:doi/10.1109/NCC.2013.6488004&rft.eisbn=1467359521&rft.eisbn_list=9781467359511&rft.eisbn_list=9781467359528&rft.eisbn_list=1467359513&rft_dat=%3Cieee_6IE%3E6488004%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i217t-87fa2b85555c9558d270a196b4dffb7c0b44024f554c59b37f3009959807b4093%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6488004&rfr_iscdi=true |