Loading…

Algorithms for change detection with unknown number of affected sensors

In this paper, we consider change detection in a sensor network where an unknown subset of sensor nodes are affected by the change. We consider two models for the channel between the sensors and the fusion center: (1) parallel non-interfering channels, and (2) physical layer fusion. For both these m...

Full description

Saved in:
Bibliographic Details
Main Authors: Sarath Kumar, P, Sai Kiran, B, Kannu, Arun Pachai, Bhashyam, Srikrishna
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 5
container_issue
container_start_page 1
container_title
container_volume
creator Sarath Kumar, P
Sai Kiran, B
Kannu, Arun Pachai
Bhashyam, Srikrishna
description In this paper, we consider change detection in a sensor network where an unknown subset of sensor nodes are affected by the change. We consider two models for the channel between the sensors and the fusion center: (1) parallel non-interfering channels, and (2) physical layer fusion. For both these models, we propose quantized transmission schemes for the sensors and corresponding fusion rules at the fusion center. The proposed fusion rules are based on an adaptive version of CUSUM. The detection delay performance of the proposed schemes is studied as a function of the number of affected sensors for a given false alarm constraint. Simulation results show that the proposed schemes can work well for a wide range of the fraction of affected sensors.
doi_str_mv 10.1109/NCC.2013.6488004
format conference_proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6488004</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6488004</ieee_id><sourcerecordid>6488004</sourcerecordid><originalsourceid>FETCH-LOGICAL-i217t-87fa2b85555c9558d270a196b4dffb7c0b44024f554c59b37f3009959807b4093</originalsourceid><addsrcrecordid>eNo1T0tLAzEYjIig1r0LXvIHdv3y2iTHsmgrFL3ouSTZpF3tJpJsKf57F6xzGYZ5wCB0T6AhBPTja9c1FAhrWq4UAL9At4S3kgktKLlElZbqXwO_RlUpnwAwV1si2hu0Wh52KQ_Tfiw4pIzd3sSdx72fvJuGFPFp9vAxfsV0ijgeR-szTgGbEOaA73HxsaRc7tBVMIfiqzMv0Mfz03u3rjdvq5duuakHSuRUKxkMtUrMcFoI1VMJhujW8j4EKx1YzoHyIAR3QlsmAwPQWmgF0nLQbIEe_nYH7_32Ow-jyT_b83f2C-Q0S_s</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Algorithms for change detection with unknown number of affected sensors</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Sarath Kumar, P ; Sai Kiran, B ; Kannu, Arun Pachai ; Bhashyam, Srikrishna</creator><creatorcontrib>Sarath Kumar, P ; Sai Kiran, B ; Kannu, Arun Pachai ; Bhashyam, Srikrishna</creatorcontrib><description>In this paper, we consider change detection in a sensor network where an unknown subset of sensor nodes are affected by the change. We consider two models for the channel between the sensors and the fusion center: (1) parallel non-interfering channels, and (2) physical layer fusion. For both these models, we propose quantized transmission schemes for the sensors and corresponding fusion rules at the fusion center. The proposed fusion rules are based on an adaptive version of CUSUM. The detection delay performance of the proposed schemes is studied as a function of the number of affected sensors for a given false alarm constraint. Simulation results show that the proposed schemes can work well for a wide range of the fraction of affected sensors.</description><identifier>ISBN: 9781467359504</identifier><identifier>ISBN: 1467359505</identifier><identifier>EISBN: 1467359521</identifier><identifier>EISBN: 9781467359511</identifier><identifier>EISBN: 9781467359528</identifier><identifier>EISBN: 1467359513</identifier><identifier>DOI: 10.1109/NCC.2013.6488004</identifier><language>eng</language><publisher>IEEE</publisher><subject>Adaptation models ; Adaptive CUSUM ; change detection ; CUSUM ; Delays ; Physical layer ; Quantization (signal) ; Sensor fusion ; sensor networks</subject><ispartof>2013 National Conference on Communications (NCC), 2013, p.1-5</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6488004$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6488004$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Sarath Kumar, P</creatorcontrib><creatorcontrib>Sai Kiran, B</creatorcontrib><creatorcontrib>Kannu, Arun Pachai</creatorcontrib><creatorcontrib>Bhashyam, Srikrishna</creatorcontrib><title>Algorithms for change detection with unknown number of affected sensors</title><title>2013 National Conference on Communications (NCC)</title><addtitle>NCC</addtitle><description>In this paper, we consider change detection in a sensor network where an unknown subset of sensor nodes are affected by the change. We consider two models for the channel between the sensors and the fusion center: (1) parallel non-interfering channels, and (2) physical layer fusion. For both these models, we propose quantized transmission schemes for the sensors and corresponding fusion rules at the fusion center. The proposed fusion rules are based on an adaptive version of CUSUM. The detection delay performance of the proposed schemes is studied as a function of the number of affected sensors for a given false alarm constraint. Simulation results show that the proposed schemes can work well for a wide range of the fraction of affected sensors.</description><subject>Adaptation models</subject><subject>Adaptive CUSUM</subject><subject>change detection</subject><subject>CUSUM</subject><subject>Delays</subject><subject>Physical layer</subject><subject>Quantization (signal)</subject><subject>Sensor fusion</subject><subject>sensor networks</subject><isbn>9781467359504</isbn><isbn>1467359505</isbn><isbn>1467359521</isbn><isbn>9781467359511</isbn><isbn>9781467359528</isbn><isbn>1467359513</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2013</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo1T0tLAzEYjIig1r0LXvIHdv3y2iTHsmgrFL3ouSTZpF3tJpJsKf57F6xzGYZ5wCB0T6AhBPTja9c1FAhrWq4UAL9At4S3kgktKLlElZbqXwO_RlUpnwAwV1si2hu0Wh52KQ_Tfiw4pIzd3sSdx72fvJuGFPFp9vAxfsV0ijgeR-szTgGbEOaA73HxsaRc7tBVMIfiqzMv0Mfz03u3rjdvq5duuakHSuRUKxkMtUrMcFoI1VMJhujW8j4EKx1YzoHyIAR3QlsmAwPQWmgF0nLQbIEe_nYH7_32Ow-jyT_b83f2C-Q0S_s</recordid><startdate>20130101</startdate><enddate>20130101</enddate><creator>Sarath Kumar, P</creator><creator>Sai Kiran, B</creator><creator>Kannu, Arun Pachai</creator><creator>Bhashyam, Srikrishna</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20130101</creationdate><title>Algorithms for change detection with unknown number of affected sensors</title><author>Sarath Kumar, P ; Sai Kiran, B ; Kannu, Arun Pachai ; Bhashyam, Srikrishna</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i217t-87fa2b85555c9558d270a196b4dffb7c0b44024f554c59b37f3009959807b4093</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Adaptation models</topic><topic>Adaptive CUSUM</topic><topic>change detection</topic><topic>CUSUM</topic><topic>Delays</topic><topic>Physical layer</topic><topic>Quantization (signal)</topic><topic>Sensor fusion</topic><topic>sensor networks</topic><toplevel>online_resources</toplevel><creatorcontrib>Sarath Kumar, P</creatorcontrib><creatorcontrib>Sai Kiran, B</creatorcontrib><creatorcontrib>Kannu, Arun Pachai</creatorcontrib><creatorcontrib>Bhashyam, Srikrishna</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEL</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Sarath Kumar, P</au><au>Sai Kiran, B</au><au>Kannu, Arun Pachai</au><au>Bhashyam, Srikrishna</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Algorithms for change detection with unknown number of affected sensors</atitle><btitle>2013 National Conference on Communications (NCC)</btitle><stitle>NCC</stitle><date>2013-01-01</date><risdate>2013</risdate><spage>1</spage><epage>5</epage><pages>1-5</pages><isbn>9781467359504</isbn><isbn>1467359505</isbn><eisbn>1467359521</eisbn><eisbn>9781467359511</eisbn><eisbn>9781467359528</eisbn><eisbn>1467359513</eisbn><abstract>In this paper, we consider change detection in a sensor network where an unknown subset of sensor nodes are affected by the change. We consider two models for the channel between the sensors and the fusion center: (1) parallel non-interfering channels, and (2) physical layer fusion. For both these models, we propose quantized transmission schemes for the sensors and corresponding fusion rules at the fusion center. The proposed fusion rules are based on an adaptive version of CUSUM. The detection delay performance of the proposed schemes is studied as a function of the number of affected sensors for a given false alarm constraint. Simulation results show that the proposed schemes can work well for a wide range of the fraction of affected sensors.</abstract><pub>IEEE</pub><doi>10.1109/NCC.2013.6488004</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9781467359504
ispartof 2013 National Conference on Communications (NCC), 2013, p.1-5
issn
language eng
recordid cdi_ieee_primary_6488004
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Adaptation models
Adaptive CUSUM
change detection
CUSUM
Delays
Physical layer
Quantization (signal)
Sensor fusion
sensor networks
title Algorithms for change detection with unknown number of affected sensors
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T09%3A15%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Algorithms%20for%20change%20detection%20with%20unknown%20number%20of%20affected%20sensors&rft.btitle=2013%20National%20Conference%20on%20Communications%20(NCC)&rft.au=Sarath%20Kumar,%20P&rft.date=2013-01-01&rft.spage=1&rft.epage=5&rft.pages=1-5&rft.isbn=9781467359504&rft.isbn_list=1467359505&rft_id=info:doi/10.1109/NCC.2013.6488004&rft.eisbn=1467359521&rft.eisbn_list=9781467359511&rft.eisbn_list=9781467359528&rft.eisbn_list=1467359513&rft_dat=%3Cieee_6IE%3E6488004%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i217t-87fa2b85555c9558d270a196b4dffb7c0b44024f554c59b37f3009959807b4093%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6488004&rfr_iscdi=true