Loading…

A data reusage algorithm based on incremental combination of LMS filters

This work introduces a new data reuse algorithm based on the incremental combination of LMS filters. It is able to outperform the Affine Projection Algorithm (APA) in its standard form, another well-known data reuse adaptive filter. First, the so called true gradient data reuse LMS-sometimes referre...

Full description

Saved in:
Bibliographic Details
Main Authors: Chamon, L. F. O., Ferro, H. F., Lopes, C. G.
Format: Conference Proceeding
Language:English
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 410
container_issue
container_start_page 406
container_title
container_volume
creator Chamon, L. F. O.
Ferro, H. F.
Lopes, C. G.
description This work introduces a new data reuse algorithm based on the incremental combination of LMS filters. It is able to outperform the Affine Projection Algorithm (APA) in its standard form, another well-known data reuse adaptive filter. First, the so called true gradient data reuse LMS-sometimes referred to as data reuse LMS-is shown to be a limiting case of the regularized APA. Afterwards, an incremental counterpart of its recursion is inspired by distributed optimization and adaptive networks scenarios. Simulations in different scenarios show the efficiency of the proposed data reuse algorithm, that is able to match and even outperform the APA in the mean-square sense at lower computational complexity.
doi_str_mv 10.1109/ACSSC.2012.6489035
format conference_proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6489035</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6489035</ieee_id><sourcerecordid>6489035</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-6bd0c743a8932c79d84503f97e843df790119a4c929289b3fc8da4fb320a4b7b3</originalsourceid><addsrcrecordid>eNotkM1KxDAUheMfOI7zArrJC3S8yU2a3OVQ1BEqLqrrIWmTMdIfaevCt3fArg58Bz4Oh7E7AVshgB52RVUVWwlCbnNlCVCfsRuhcoMaFKlztpLa5JlEwAu2IWOXToO4ZCsB2mY5El6zzTR9AcBJmhOpFdvveONmx8fwM7lj4K49DmOaPzvu3RQaPvQ89fUYutDPruX10PnUuzmd-BB5-VrxmNo5jNMtu4quncJmyTX7eHp8L_ZZ-fb8UuzKLAmj5yz3DdRGobOEsjbUWKUBI5lgFTbR0GkaOVWTJGnJY6xt41T0KMEpbzyu2f2_N4UQDt9j6tz4e1hOwT_BdVCJ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A data reusage algorithm based on incremental combination of LMS filters</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Chamon, L. F. O. ; Ferro, H. F. ; Lopes, C. G.</creator><creatorcontrib>Chamon, L. F. O. ; Ferro, H. F. ; Lopes, C. G.</creatorcontrib><description>This work introduces a new data reuse algorithm based on the incremental combination of LMS filters. It is able to outperform the Affine Projection Algorithm (APA) in its standard form, another well-known data reuse adaptive filter. First, the so called true gradient data reuse LMS-sometimes referred to as data reuse LMS-is shown to be a limiting case of the regularized APA. Afterwards, an incremental counterpart of its recursion is inspired by distributed optimization and adaptive networks scenarios. Simulations in different scenarios show the efficiency of the proposed data reuse algorithm, that is able to match and even outperform the APA in the mean-square sense at lower computational complexity.</description><identifier>ISSN: 1058-6393</identifier><identifier>ISBN: 9781467350501</identifier><identifier>ISBN: 1467350508</identifier><identifier>EISSN: 2576-2303</identifier><identifier>EISBN: 1467350494</identifier><identifier>EISBN: 9781467350495</identifier><identifier>EISBN: 1467350516</identifier><identifier>EISBN: 9781467350518</identifier><identifier>DOI: 10.1109/ACSSC.2012.6489035</identifier><language>eng</language><publisher>IEEE</publisher><ispartof>2012 Conference Record of the Forty Sixth Asilomar Conference on Signals, Systems and Computers (ASILOMAR), 2012, p.406-410</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6489035$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54530,54895,54907</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6489035$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Chamon, L. F. O.</creatorcontrib><creatorcontrib>Ferro, H. F.</creatorcontrib><creatorcontrib>Lopes, C. G.</creatorcontrib><title>A data reusage algorithm based on incremental combination of LMS filters</title><title>2012 Conference Record of the Forty Sixth Asilomar Conference on Signals, Systems and Computers (ASILOMAR)</title><addtitle>ACSSC</addtitle><description>This work introduces a new data reuse algorithm based on the incremental combination of LMS filters. It is able to outperform the Affine Projection Algorithm (APA) in its standard form, another well-known data reuse adaptive filter. First, the so called true gradient data reuse LMS-sometimes referred to as data reuse LMS-is shown to be a limiting case of the regularized APA. Afterwards, an incremental counterpart of its recursion is inspired by distributed optimization and adaptive networks scenarios. Simulations in different scenarios show the efficiency of the proposed data reuse algorithm, that is able to match and even outperform the APA in the mean-square sense at lower computational complexity.</description><issn>1058-6393</issn><issn>2576-2303</issn><isbn>9781467350501</isbn><isbn>1467350508</isbn><isbn>1467350494</isbn><isbn>9781467350495</isbn><isbn>1467350516</isbn><isbn>9781467350518</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotkM1KxDAUheMfOI7zArrJC3S8yU2a3OVQ1BEqLqrrIWmTMdIfaevCt3fArg58Bz4Oh7E7AVshgB52RVUVWwlCbnNlCVCfsRuhcoMaFKlztpLa5JlEwAu2IWOXToO4ZCsB2mY5El6zzTR9AcBJmhOpFdvveONmx8fwM7lj4K49DmOaPzvu3RQaPvQ89fUYutDPruX10PnUuzmd-BB5-VrxmNo5jNMtu4quncJmyTX7eHp8L_ZZ-fb8UuzKLAmj5yz3DdRGobOEsjbUWKUBI5lgFTbR0GkaOVWTJGnJY6xt41T0KMEpbzyu2f2_N4UQDt9j6tz4e1hOwT_BdVCJ</recordid><startdate>201211</startdate><enddate>201211</enddate><creator>Chamon, L. F. O.</creator><creator>Ferro, H. F.</creator><creator>Lopes, C. G.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201211</creationdate><title>A data reusage algorithm based on incremental combination of LMS filters</title><author>Chamon, L. F. O. ; Ferro, H. F. ; Lopes, C. G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-6bd0c743a8932c79d84503f97e843df790119a4c929289b3fc8da4fb320a4b7b3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Chamon, L. F. O.</creatorcontrib><creatorcontrib>Ferro, H. F.</creatorcontrib><creatorcontrib>Lopes, C. G.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chamon, L. F. O.</au><au>Ferro, H. F.</au><au>Lopes, C. G.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A data reusage algorithm based on incremental combination of LMS filters</atitle><btitle>2012 Conference Record of the Forty Sixth Asilomar Conference on Signals, Systems and Computers (ASILOMAR)</btitle><stitle>ACSSC</stitle><date>2012-11</date><risdate>2012</risdate><spage>406</spage><epage>410</epage><pages>406-410</pages><issn>1058-6393</issn><eissn>2576-2303</eissn><isbn>9781467350501</isbn><isbn>1467350508</isbn><eisbn>1467350494</eisbn><eisbn>9781467350495</eisbn><eisbn>1467350516</eisbn><eisbn>9781467350518</eisbn><abstract>This work introduces a new data reuse algorithm based on the incremental combination of LMS filters. It is able to outperform the Affine Projection Algorithm (APA) in its standard form, another well-known data reuse adaptive filter. First, the so called true gradient data reuse LMS-sometimes referred to as data reuse LMS-is shown to be a limiting case of the regularized APA. Afterwards, an incremental counterpart of its recursion is inspired by distributed optimization and adaptive networks scenarios. Simulations in different scenarios show the efficiency of the proposed data reuse algorithm, that is able to match and even outperform the APA in the mean-square sense at lower computational complexity.</abstract><pub>IEEE</pub><doi>10.1109/ACSSC.2012.6489035</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1058-6393
ispartof 2012 Conference Record of the Forty Sixth Asilomar Conference on Signals, Systems and Computers (ASILOMAR), 2012, p.406-410
issn 1058-6393
2576-2303
language eng
recordid cdi_ieee_primary_6489035
source IEEE Electronic Library (IEL) Conference Proceedings
title A data reusage algorithm based on incremental combination of LMS filters
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T09%3A28%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20data%20reusage%20algorithm%20based%20on%20incremental%20combination%20of%20LMS%20filters&rft.btitle=2012%20Conference%20Record%20of%20the%20Forty%20Sixth%20Asilomar%20Conference%20on%20Signals,%20Systems%20and%20Computers%20(ASILOMAR)&rft.au=Chamon,%20L.%20F.%20O.&rft.date=2012-11&rft.spage=406&rft.epage=410&rft.pages=406-410&rft.issn=1058-6393&rft.eissn=2576-2303&rft.isbn=9781467350501&rft.isbn_list=1467350508&rft_id=info:doi/10.1109/ACSSC.2012.6489035&rft.eisbn=1467350494&rft.eisbn_list=9781467350495&rft.eisbn_list=1467350516&rft.eisbn_list=9781467350518&rft_dat=%3Cieee_6IE%3E6489035%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-6bd0c743a8932c79d84503f97e843df790119a4c929289b3fc8da4fb320a4b7b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6489035&rfr_iscdi=true