Loading…
Evaluating Simple Fully Automated Heuristics for Adaptive Constraint Propagation
Despite the advancements in constraint propagation methods, most CP solvers still apply fixed predetermined propagators on each constraint of the problem. However, selecting the appropriate propagator for a constraint can be a difficult task that requires expertise. One way to overcome this is throu...
Saved in:
Main Authors: | , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 885 |
container_issue | |
container_start_page | 880 |
container_title | |
container_volume | 1 |
creator | Paparrizou, A. Stergiou, K. |
description | Despite the advancements in constraint propagation methods, most CP solvers still apply fixed predetermined propagators on each constraint of the problem. However, selecting the appropriate propagator for a constraint can be a difficult task that requires expertise. One way to overcome this is through the use of machine learning. A different approach uses heuristics to dynamically adapt the propagation method during search. The heuristics of this category proposed in [1] displayed promising results, but their evaluation and application suffered from two important drawbacks: They were only defined and tested on binary constraints and they required calibration of their input parameters. In this paper we follow this line of work by describing and evaluating simple, fully automated heuristics that are applicable on constraints of any arity. Experimental results from various problems show that the proposed heuristics can outperform a standard approach that applies a preselected propagator on each constraint resulting in an efficient and robust solver. |
doi_str_mv | 10.1109/ICTAI.2012.123 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_6495136</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6495136</ieee_id><sourcerecordid>6495136</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-10506cdcd3242917e7e4f9fd07d88203187582cc0a2b4915d015ba3490dfb15d3</originalsourceid><addsrcrecordid>eNotj89rwjAYQLNfMHVed9kl_0Dd931JmuZYypyCMGHuLLFJJaO2pU0F__s5ttPjXR48xp4RFohgXtfFLl8vCJAWSOKGTUGnRkmDim7ZhIRWCaDRd2yKUhsDRDq9ZxOEjBIhwTyy-TB8AwCCUJCpCdu-nW092hiaI_8Mp672fDnW9YXnY2xPNnrHV37swxBDOfCq7XnubBfD2fOibYbY29BEvu3bzh6vlbZ5Yg-VrQc__-eMfS3fdsUq2Xy8r4t8kwTUKiYICtLSlU6QJIPaay8rUznQLssIBGZaZVSWYOnw--cA1cEKacBVh6uKGXv56wbv_b7rw8n2l30qjUKRih-C31KY</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Evaluating Simple Fully Automated Heuristics for Adaptive Constraint Propagation</title><source>IEEE Xplore All Conference Series</source><creator>Paparrizou, A. ; Stergiou, K.</creator><creatorcontrib>Paparrizou, A. ; Stergiou, K.</creatorcontrib><description>Despite the advancements in constraint propagation methods, most CP solvers still apply fixed predetermined propagators on each constraint of the problem. However, selecting the appropriate propagator for a constraint can be a difficult task that requires expertise. One way to overcome this is through the use of machine learning. A different approach uses heuristics to dynamically adapt the propagation method during search. The heuristics of this category proposed in [1] displayed promising results, but their evaluation and application suffered from two important drawbacks: They were only defined and tested on binary constraints and they required calibration of their input parameters. In this paper we follow this line of work by describing and evaluating simple, fully automated heuristics that are applicable on constraints of any arity. Experimental results from various problems show that the proposed heuristics can outperform a standard approach that applies a preselected propagator on each constraint resulting in an efficient and robust solver.</description><identifier>ISSN: 1082-3409</identifier><identifier>ISBN: 1479902276</identifier><identifier>ISBN: 9781479902279</identifier><identifier>EISSN: 2375-0197</identifier><identifier>EISBN: 0769549152</identifier><identifier>EISBN: 9780769549156</identifier><identifier>DOI: 10.1109/ICTAI.2012.123</identifier><identifier>CODEN: IEEPAD</identifier><language>eng</language><publisher>IEEE</publisher><subject>Boolean functions ; constraint programming ; constraint propagation ; Data structures ; Monitoring ; Robustness ; search ; Search problems ; Tuning</subject><ispartof>2012 IEEE 24th International Conference on Tools with Artificial Intelligence, 2012, Vol.1, p.880-885</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6495136$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54555,54920,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6495136$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Paparrizou, A.</creatorcontrib><creatorcontrib>Stergiou, K.</creatorcontrib><title>Evaluating Simple Fully Automated Heuristics for Adaptive Constraint Propagation</title><title>2012 IEEE 24th International Conference on Tools with Artificial Intelligence</title><addtitle>TAI</addtitle><description>Despite the advancements in constraint propagation methods, most CP solvers still apply fixed predetermined propagators on each constraint of the problem. However, selecting the appropriate propagator for a constraint can be a difficult task that requires expertise. One way to overcome this is through the use of machine learning. A different approach uses heuristics to dynamically adapt the propagation method during search. The heuristics of this category proposed in [1] displayed promising results, but their evaluation and application suffered from two important drawbacks: They were only defined and tested on binary constraints and they required calibration of their input parameters. In this paper we follow this line of work by describing and evaluating simple, fully automated heuristics that are applicable on constraints of any arity. Experimental results from various problems show that the proposed heuristics can outperform a standard approach that applies a preselected propagator on each constraint resulting in an efficient and robust solver.</description><subject>Boolean functions</subject><subject>constraint programming</subject><subject>constraint propagation</subject><subject>Data structures</subject><subject>Monitoring</subject><subject>Robustness</subject><subject>search</subject><subject>Search problems</subject><subject>Tuning</subject><issn>1082-3409</issn><issn>2375-0197</issn><isbn>1479902276</isbn><isbn>9781479902279</isbn><isbn>0769549152</isbn><isbn>9780769549156</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotj89rwjAYQLNfMHVed9kl_0Dd931JmuZYypyCMGHuLLFJJaO2pU0F__s5ttPjXR48xp4RFohgXtfFLl8vCJAWSOKGTUGnRkmDim7ZhIRWCaDRd2yKUhsDRDq9ZxOEjBIhwTyy-TB8AwCCUJCpCdu-nW092hiaI_8Mp672fDnW9YXnY2xPNnrHV37swxBDOfCq7XnubBfD2fOibYbY29BEvu3bzh6vlbZ5Yg-VrQc__-eMfS3fdsUq2Xy8r4t8kwTUKiYICtLSlU6QJIPaay8rUznQLssIBGZaZVSWYOnw--cA1cEKacBVh6uKGXv56wbv_b7rw8n2l30qjUKRih-C31KY</recordid><startdate>201211</startdate><enddate>201211</enddate><creator>Paparrizou, A.</creator><creator>Stergiou, K.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201211</creationdate><title>Evaluating Simple Fully Automated Heuristics for Adaptive Constraint Propagation</title><author>Paparrizou, A. ; Stergiou, K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-10506cdcd3242917e7e4f9fd07d88203187582cc0a2b4915d015ba3490dfb15d3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Boolean functions</topic><topic>constraint programming</topic><topic>constraint propagation</topic><topic>Data structures</topic><topic>Monitoring</topic><topic>Robustness</topic><topic>search</topic><topic>Search problems</topic><topic>Tuning</topic><toplevel>online_resources</toplevel><creatorcontrib>Paparrizou, A.</creatorcontrib><creatorcontrib>Stergiou, K.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Paparrizou, A.</au><au>Stergiou, K.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Evaluating Simple Fully Automated Heuristics for Adaptive Constraint Propagation</atitle><btitle>2012 IEEE 24th International Conference on Tools with Artificial Intelligence</btitle><stitle>TAI</stitle><date>2012-11</date><risdate>2012</risdate><volume>1</volume><spage>880</spage><epage>885</epage><pages>880-885</pages><issn>1082-3409</issn><eissn>2375-0197</eissn><isbn>1479902276</isbn><isbn>9781479902279</isbn><eisbn>0769549152</eisbn><eisbn>9780769549156</eisbn><coden>IEEPAD</coden><abstract>Despite the advancements in constraint propagation methods, most CP solvers still apply fixed predetermined propagators on each constraint of the problem. However, selecting the appropriate propagator for a constraint can be a difficult task that requires expertise. One way to overcome this is through the use of machine learning. A different approach uses heuristics to dynamically adapt the propagation method during search. The heuristics of this category proposed in [1] displayed promising results, but their evaluation and application suffered from two important drawbacks: They were only defined and tested on binary constraints and they required calibration of their input parameters. In this paper we follow this line of work by describing and evaluating simple, fully automated heuristics that are applicable on constraints of any arity. Experimental results from various problems show that the proposed heuristics can outperform a standard approach that applies a preselected propagator on each constraint resulting in an efficient and robust solver.</abstract><pub>IEEE</pub><doi>10.1109/ICTAI.2012.123</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1082-3409 |
ispartof | 2012 IEEE 24th International Conference on Tools with Artificial Intelligence, 2012, Vol.1, p.880-885 |
issn | 1082-3409 2375-0197 |
language | eng |
recordid | cdi_ieee_primary_6495136 |
source | IEEE Xplore All Conference Series |
subjects | Boolean functions constraint programming constraint propagation Data structures Monitoring Robustness search Search problems Tuning |
title | Evaluating Simple Fully Automated Heuristics for Adaptive Constraint Propagation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T12%3A41%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Evaluating%20Simple%20Fully%20Automated%20Heuristics%20for%20Adaptive%20Constraint%20Propagation&rft.btitle=2012%20IEEE%2024th%20International%20Conference%20on%20Tools%20with%20Artificial%20Intelligence&rft.au=Paparrizou,%20A.&rft.date=2012-11&rft.volume=1&rft.spage=880&rft.epage=885&rft.pages=880-885&rft.issn=1082-3409&rft.eissn=2375-0197&rft.isbn=1479902276&rft.isbn_list=9781479902279&rft.coden=IEEPAD&rft_id=info:doi/10.1109/ICTAI.2012.123&rft.eisbn=0769549152&rft.eisbn_list=9780769549156&rft_dat=%3Cieee_CHZPO%3E6495136%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-10506cdcd3242917e7e4f9fd07d88203187582cc0a2b4915d015ba3490dfb15d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6495136&rfr_iscdi=true |