Loading…
High throughput TCR sequence alignment using multi-GPU with inter-task parallelization
Based on GPU computing, a fast computing using multi-GPU is proposed for the alignment of vast amounts of T-cell receptor (TCR) nucleotide sequences. Using CUDA-enabled Fermi GPU and CUDA toolkit 4.0 provided by NVIDIA, we design a faster and more effective sequence alignment process based on CPU an...
Saved in:
Main Authors: | , , , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 236 |
container_issue | |
container_start_page | 231 |
container_title | |
container_volume | |
creator | Guoli Ji Qiang Li Mingcheng Wu Jingyi Fu Xiaorong Hu Liangwang Chi Qi Liu |
description | Based on GPU computing, a fast computing using multi-GPU is proposed for the alignment of vast amounts of T-cell receptor (TCR) nucleotide sequences. Using CUDA-enabled Fermi GPU and CUDA toolkit 4.0 provided by NVIDIA, we design a faster and more effective sequence alignment process based on CPU and multi-GPU: CPU is responsible for logic control, GPU responsible for parallel computing. Inter-task parallel strategy is applied in the part of parallel computing, which not only bring high parallelism, but also make the alignment process not confined to a specific parallel alignment algorithm. Under the same hardware condition, the alignment computing of mouse TCR nucleotide sequences were carried out by multi-GPU computing, single-GPU computing and only-CPU computing respectively. The results show that multi-GPU computing has the best performance considering alignment efficiency and the cost. |
doi_str_mv | 10.1109/IECBES.2012.6498184 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6498184</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6498184</ieee_id><sourcerecordid>6498184</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-f89064caa5d8368224a120a209cf5f9781d7ee661a4a3add3a814b423cd20ffe3</originalsourceid><addsrcrecordid>eNpVkM9Og0AYxNcYE03lCXrZFwD3H8tyVIJtkyYabb02n_ABq0CRXWL06cXYi4fJZC6_zAwhS84izll6s8mzu_w5EoyLSKvUcKPOSJAmhiudSK61Nuf_slKXJHDujTE2A_SsK_KytnVDfTMep7oZJk932RN1-DFhXyCF1tZ9h72nk7N9Tbup9TZcPe7pp_UNtb3HMfTg3ukAI7QttvYbvD321-SigtZhcPIF2d_nu2wdbh9Wm-x2G1qexD6sTMq0KgDi0khthFDABQPB0qKKq9_qZYKoNQcFEspSwjzmVQlZlIJVFcoFWf5xLSIehtF2MH4dTm_IHx6iVCg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>High throughput TCR sequence alignment using multi-GPU with inter-task parallelization</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Guoli Ji ; Qiang Li ; Mingcheng Wu ; Jingyi Fu ; Xiaorong Hu ; Liangwang Chi ; Qi Liu</creator><creatorcontrib>Guoli Ji ; Qiang Li ; Mingcheng Wu ; Jingyi Fu ; Xiaorong Hu ; Liangwang Chi ; Qi Liu</creatorcontrib><description>Based on GPU computing, a fast computing using multi-GPU is proposed for the alignment of vast amounts of T-cell receptor (TCR) nucleotide sequences. Using CUDA-enabled Fermi GPU and CUDA toolkit 4.0 provided by NVIDIA, we design a faster and more effective sequence alignment process based on CPU and multi-GPU: CPU is responsible for logic control, GPU responsible for parallel computing. Inter-task parallel strategy is applied in the part of parallel computing, which not only bring high parallelism, but also make the alignment process not confined to a specific parallel alignment algorithm. Under the same hardware condition, the alignment computing of mouse TCR nucleotide sequences were carried out by multi-GPU computing, single-GPU computing and only-CPU computing respectively. The results show that multi-GPU computing has the best performance considering alignment efficiency and the cost.</description><identifier>ISBN: 9781467316644</identifier><identifier>ISBN: 1467316644</identifier><identifier>EISBN: 9781467316668</identifier><identifier>EISBN: 1467316660</identifier><identifier>DOI: 10.1109/IECBES.2012.6498184</identifier><language>eng</language><publisher>IEEE</publisher><subject>CUDA ; Multi-GPU ; Sequence alignment</subject><ispartof>2012 IEEE-EMBS Conference on Biomedical Engineering and Sciences, 2012, p.231-236</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6498184$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,778,782,787,788,2054,27908,54903</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6498184$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Guoli Ji</creatorcontrib><creatorcontrib>Qiang Li</creatorcontrib><creatorcontrib>Mingcheng Wu</creatorcontrib><creatorcontrib>Jingyi Fu</creatorcontrib><creatorcontrib>Xiaorong Hu</creatorcontrib><creatorcontrib>Liangwang Chi</creatorcontrib><creatorcontrib>Qi Liu</creatorcontrib><title>High throughput TCR sequence alignment using multi-GPU with inter-task parallelization</title><title>2012 IEEE-EMBS Conference on Biomedical Engineering and Sciences</title><addtitle>IECBES</addtitle><description>Based on GPU computing, a fast computing using multi-GPU is proposed for the alignment of vast amounts of T-cell receptor (TCR) nucleotide sequences. Using CUDA-enabled Fermi GPU and CUDA toolkit 4.0 provided by NVIDIA, we design a faster and more effective sequence alignment process based on CPU and multi-GPU: CPU is responsible for logic control, GPU responsible for parallel computing. Inter-task parallel strategy is applied in the part of parallel computing, which not only bring high parallelism, but also make the alignment process not confined to a specific parallel alignment algorithm. Under the same hardware condition, the alignment computing of mouse TCR nucleotide sequences were carried out by multi-GPU computing, single-GPU computing and only-CPU computing respectively. The results show that multi-GPU computing has the best performance considering alignment efficiency and the cost.</description><subject>CUDA</subject><subject>Multi-GPU</subject><subject>Sequence alignment</subject><isbn>9781467316644</isbn><isbn>1467316644</isbn><isbn>9781467316668</isbn><isbn>1467316660</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNpVkM9Og0AYxNcYE03lCXrZFwD3H8tyVIJtkyYabb02n_ABq0CRXWL06cXYi4fJZC6_zAwhS84izll6s8mzu_w5EoyLSKvUcKPOSJAmhiudSK61Nuf_slKXJHDujTE2A_SsK_KytnVDfTMep7oZJk932RN1-DFhXyCF1tZ9h72nk7N9Tbup9TZcPe7pp_UNtb3HMfTg3ukAI7QttvYbvD321-SigtZhcPIF2d_nu2wdbh9Wm-x2G1qexD6sTMq0KgDi0khthFDABQPB0qKKq9_qZYKoNQcFEspSwjzmVQlZlIJVFcoFWf5xLSIehtF2MH4dTm_IHx6iVCg</recordid><startdate>201212</startdate><enddate>201212</enddate><creator>Guoli Ji</creator><creator>Qiang Li</creator><creator>Mingcheng Wu</creator><creator>Jingyi Fu</creator><creator>Xiaorong Hu</creator><creator>Liangwang Chi</creator><creator>Qi Liu</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201212</creationdate><title>High throughput TCR sequence alignment using multi-GPU with inter-task parallelization</title><author>Guoli Ji ; Qiang Li ; Mingcheng Wu ; Jingyi Fu ; Xiaorong Hu ; Liangwang Chi ; Qi Liu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-f89064caa5d8368224a120a209cf5f9781d7ee661a4a3add3a814b423cd20ffe3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>CUDA</topic><topic>Multi-GPU</topic><topic>Sequence alignment</topic><toplevel>online_resources</toplevel><creatorcontrib>Guoli Ji</creatorcontrib><creatorcontrib>Qiang Li</creatorcontrib><creatorcontrib>Mingcheng Wu</creatorcontrib><creatorcontrib>Jingyi Fu</creatorcontrib><creatorcontrib>Xiaorong Hu</creatorcontrib><creatorcontrib>Liangwang Chi</creatorcontrib><creatorcontrib>Qi Liu</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Guoli Ji</au><au>Qiang Li</au><au>Mingcheng Wu</au><au>Jingyi Fu</au><au>Xiaorong Hu</au><au>Liangwang Chi</au><au>Qi Liu</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>High throughput TCR sequence alignment using multi-GPU with inter-task parallelization</atitle><btitle>2012 IEEE-EMBS Conference on Biomedical Engineering and Sciences</btitle><stitle>IECBES</stitle><date>2012-12</date><risdate>2012</risdate><spage>231</spage><epage>236</epage><pages>231-236</pages><isbn>9781467316644</isbn><isbn>1467316644</isbn><eisbn>9781467316668</eisbn><eisbn>1467316660</eisbn><abstract>Based on GPU computing, a fast computing using multi-GPU is proposed for the alignment of vast amounts of T-cell receptor (TCR) nucleotide sequences. Using CUDA-enabled Fermi GPU and CUDA toolkit 4.0 provided by NVIDIA, we design a faster and more effective sequence alignment process based on CPU and multi-GPU: CPU is responsible for logic control, GPU responsible for parallel computing. Inter-task parallel strategy is applied in the part of parallel computing, which not only bring high parallelism, but also make the alignment process not confined to a specific parallel alignment algorithm. Under the same hardware condition, the alignment computing of mouse TCR nucleotide sequences were carried out by multi-GPU computing, single-GPU computing and only-CPU computing respectively. The results show that multi-GPU computing has the best performance considering alignment efficiency and the cost.</abstract><pub>IEEE</pub><doi>10.1109/IECBES.2012.6498184</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 9781467316644 |
ispartof | 2012 IEEE-EMBS Conference on Biomedical Engineering and Sciences, 2012, p.231-236 |
issn | |
language | eng |
recordid | cdi_ieee_primary_6498184 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | CUDA Multi-GPU Sequence alignment |
title | High throughput TCR sequence alignment using multi-GPU with inter-task parallelization |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T21%3A00%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=High%20throughput%20TCR%20sequence%20alignment%20using%20multi-GPU%20with%20inter-task%20parallelization&rft.btitle=2012%20IEEE-EMBS%20Conference%20on%20Biomedical%20Engineering%20and%20Sciences&rft.au=Guoli%20Ji&rft.date=2012-12&rft.spage=231&rft.epage=236&rft.pages=231-236&rft.isbn=9781467316644&rft.isbn_list=1467316644&rft_id=info:doi/10.1109/IECBES.2012.6498184&rft.eisbn=9781467316668&rft.eisbn_list=1467316660&rft_dat=%3Cieee_6IE%3E6498184%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-f89064caa5d8368224a120a209cf5f9781d7ee661a4a3add3a814b423cd20ffe3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6498184&rfr_iscdi=true |