Loading…
Selection of proper activation functions in back-propagation neural networks algorithm for transformer internal fault locations
This paper presents an analysis on the selection of an appropriate activation function used in neural networks for locating the internal fault in a two-winding three-phase transformer. A decision algorithm based on a combination of Discrete Wavelet Transforms and neural networks is developed. Fault...
Saved in:
Main Authors: | , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 1492 |
container_issue | |
container_start_page | 1487 |
container_title | |
container_volume | |
creator | Jettanasen, C. Pothisarn, C. Bunjongjit, S. Ngaopitakkul, A. Suechoey, B. |
description | This paper presents an analysis on the selection of an appropriate activation function used in neural networks for locating the internal fault in a two-winding three-phase transformer. A decision algorithm based on a combination of Discrete Wavelet Transforms and neural networks is developed. Fault conditions of the transformer are simulated using ATP/EMTP in order to obtain current signals. The training process for the neural network and fault diagnosis decision are implemented using toolboxes on MATLAB/Simulink. Various activation functions in hidden layers and output layers are compared in order to find out and to select the best activation function for indicating the position of internal faults of the winding transformer for the winding to ground faults. It is found that the use of Hyperbolic tangent-function for the hidden layers, and Linear activation function for the output layer gives the most satisfactory accuracy in these particular case studies. |
doi_str_mv | 10.1109/SCIS-ISIS.2012.6505120 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6505120</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6505120</ieee_id><sourcerecordid>6505120</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-6d7432dcebaef586163b85c0537e4ab6c51d209be8e7dacceaf01b9889cc0a973</originalsourceid><addsrcrecordid>eNpVkM1OwzAQhI0QEqj0CZCQXyDFduLYOaKKn0iVOATO1cZZF9PUqRwHxIlXx7S9cNnZnRl9hyXklrMF56y6a5Z1k9VN3SwE42JRSia5YGdkXinNi1LlQhWcn_-7hb4k83H8YIwlhkrzivw02KOJbvB0sHQfhj0GCsn4hINpJ39IR-o8bcFss78ObI6pxylAnyR-DWE7Uug3Q3DxfUftEGgM4Me07BLS-YjBp66FqY-0H8yBMF6TCwv9iPOTzsjb48Pr8jlbvTzVy_tV5riSMSs7VeSiM9gCWqlLXuatlobJXGEBbWkk7wSrWtSoOjAGwTLeVlpXxjCoVD4jN0euQ8T1PrgdhO_16W35L4v-ZpI</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Selection of proper activation functions in back-propagation neural networks algorithm for transformer internal fault locations</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Jettanasen, C. ; Pothisarn, C. ; Bunjongjit, S. ; Ngaopitakkul, A. ; Suechoey, B.</creator><creatorcontrib>Jettanasen, C. ; Pothisarn, C. ; Bunjongjit, S. ; Ngaopitakkul, A. ; Suechoey, B.</creatorcontrib><description>This paper presents an analysis on the selection of an appropriate activation function used in neural networks for locating the internal fault in a two-winding three-phase transformer. A decision algorithm based on a combination of Discrete Wavelet Transforms and neural networks is developed. Fault conditions of the transformer are simulated using ATP/EMTP in order to obtain current signals. The training process for the neural network and fault diagnosis decision are implemented using toolboxes on MATLAB/Simulink. Various activation functions in hidden layers and output layers are compared in order to find out and to select the best activation function for indicating the position of internal faults of the winding transformer for the winding to ground faults. It is found that the use of Hyperbolic tangent-function for the hidden layers, and Linear activation function for the output layer gives the most satisfactory accuracy in these particular case studies.</description><identifier>ISBN: 9781467327428</identifier><identifier>ISBN: 1467327425</identifier><identifier>EISBN: 9781467327411</identifier><identifier>EISBN: 1467327417</identifier><identifier>EISBN: 1467327433</identifier><identifier>EISBN: 9781467327435</identifier><identifier>DOI: 10.1109/SCIS-ISIS.2012.6505120</identifier><language>eng</language><publisher>IEEE</publisher><subject>Back-propagation neural network ; Discrete Wavelet Transforms ; Internal faults ; Transformer windings</subject><ispartof>The 6th International Conference on Soft Computing and Intelligent Systems, and The 13th International Symposium on Advanced Intelligence Systems, 2012, p.1487-1492</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6505120$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6505120$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Jettanasen, C.</creatorcontrib><creatorcontrib>Pothisarn, C.</creatorcontrib><creatorcontrib>Bunjongjit, S.</creatorcontrib><creatorcontrib>Ngaopitakkul, A.</creatorcontrib><creatorcontrib>Suechoey, B.</creatorcontrib><title>Selection of proper activation functions in back-propagation neural networks algorithm for transformer internal fault locations</title><title>The 6th International Conference on Soft Computing and Intelligent Systems, and The 13th International Symposium on Advanced Intelligence Systems</title><addtitle>SCIS-ISIS</addtitle><description>This paper presents an analysis on the selection of an appropriate activation function used in neural networks for locating the internal fault in a two-winding three-phase transformer. A decision algorithm based on a combination of Discrete Wavelet Transforms and neural networks is developed. Fault conditions of the transformer are simulated using ATP/EMTP in order to obtain current signals. The training process for the neural network and fault diagnosis decision are implemented using toolboxes on MATLAB/Simulink. Various activation functions in hidden layers and output layers are compared in order to find out and to select the best activation function for indicating the position of internal faults of the winding transformer for the winding to ground faults. It is found that the use of Hyperbolic tangent-function for the hidden layers, and Linear activation function for the output layer gives the most satisfactory accuracy in these particular case studies.</description><subject>Back-propagation neural network</subject><subject>Discrete Wavelet Transforms</subject><subject>Internal faults</subject><subject>Transformer windings</subject><isbn>9781467327428</isbn><isbn>1467327425</isbn><isbn>9781467327411</isbn><isbn>1467327417</isbn><isbn>1467327433</isbn><isbn>9781467327435</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNpVkM1OwzAQhI0QEqj0CZCQXyDFduLYOaKKn0iVOATO1cZZF9PUqRwHxIlXx7S9cNnZnRl9hyXklrMF56y6a5Z1k9VN3SwE42JRSia5YGdkXinNi1LlQhWcn_-7hb4k83H8YIwlhkrzivw02KOJbvB0sHQfhj0GCsn4hINpJ39IR-o8bcFss78ObI6pxylAnyR-DWE7Uug3Q3DxfUftEGgM4Me07BLS-YjBp66FqY-0H8yBMF6TCwv9iPOTzsjb48Pr8jlbvTzVy_tV5riSMSs7VeSiM9gCWqlLXuatlobJXGEBbWkk7wSrWtSoOjAGwTLeVlpXxjCoVD4jN0euQ8T1PrgdhO_16W35L4v-ZpI</recordid><startdate>201211</startdate><enddate>201211</enddate><creator>Jettanasen, C.</creator><creator>Pothisarn, C.</creator><creator>Bunjongjit, S.</creator><creator>Ngaopitakkul, A.</creator><creator>Suechoey, B.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201211</creationdate><title>Selection of proper activation functions in back-propagation neural networks algorithm for transformer internal fault locations</title><author>Jettanasen, C. ; Pothisarn, C. ; Bunjongjit, S. ; Ngaopitakkul, A. ; Suechoey, B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-6d7432dcebaef586163b85c0537e4ab6c51d209be8e7dacceaf01b9889cc0a973</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Back-propagation neural network</topic><topic>Discrete Wavelet Transforms</topic><topic>Internal faults</topic><topic>Transformer windings</topic><toplevel>online_resources</toplevel><creatorcontrib>Jettanasen, C.</creatorcontrib><creatorcontrib>Pothisarn, C.</creatorcontrib><creatorcontrib>Bunjongjit, S.</creatorcontrib><creatorcontrib>Ngaopitakkul, A.</creatorcontrib><creatorcontrib>Suechoey, B.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Jettanasen, C.</au><au>Pothisarn, C.</au><au>Bunjongjit, S.</au><au>Ngaopitakkul, A.</au><au>Suechoey, B.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Selection of proper activation functions in back-propagation neural networks algorithm for transformer internal fault locations</atitle><btitle>The 6th International Conference on Soft Computing and Intelligent Systems, and The 13th International Symposium on Advanced Intelligence Systems</btitle><stitle>SCIS-ISIS</stitle><date>2012-11</date><risdate>2012</risdate><spage>1487</spage><epage>1492</epage><pages>1487-1492</pages><isbn>9781467327428</isbn><isbn>1467327425</isbn><eisbn>9781467327411</eisbn><eisbn>1467327417</eisbn><eisbn>1467327433</eisbn><eisbn>9781467327435</eisbn><abstract>This paper presents an analysis on the selection of an appropriate activation function used in neural networks for locating the internal fault in a two-winding three-phase transformer. A decision algorithm based on a combination of Discrete Wavelet Transforms and neural networks is developed. Fault conditions of the transformer are simulated using ATP/EMTP in order to obtain current signals. The training process for the neural network and fault diagnosis decision are implemented using toolboxes on MATLAB/Simulink. Various activation functions in hidden layers and output layers are compared in order to find out and to select the best activation function for indicating the position of internal faults of the winding transformer for the winding to ground faults. It is found that the use of Hyperbolic tangent-function for the hidden layers, and Linear activation function for the output layer gives the most satisfactory accuracy in these particular case studies.</abstract><pub>IEEE</pub><doi>10.1109/SCIS-ISIS.2012.6505120</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 9781467327428 |
ispartof | The 6th International Conference on Soft Computing and Intelligent Systems, and The 13th International Symposium on Advanced Intelligence Systems, 2012, p.1487-1492 |
issn | |
language | eng |
recordid | cdi_ieee_primary_6505120 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Back-propagation neural network Discrete Wavelet Transforms Internal faults Transformer windings |
title | Selection of proper activation functions in back-propagation neural networks algorithm for transformer internal fault locations |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T16%3A00%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Selection%20of%20proper%20activation%20functions%20in%20back-propagation%20neural%20networks%20algorithm%20for%20transformer%20internal%20fault%20locations&rft.btitle=The%206th%20International%20Conference%20on%20Soft%20Computing%20and%20Intelligent%20Systems,%20and%20The%2013th%20International%20Symposium%20on%20Advanced%20Intelligence%20Systems&rft.au=Jettanasen,%20C.&rft.date=2012-11&rft.spage=1487&rft.epage=1492&rft.pages=1487-1492&rft.isbn=9781467327428&rft.isbn_list=1467327425&rft_id=info:doi/10.1109/SCIS-ISIS.2012.6505120&rft.eisbn=9781467327411&rft.eisbn_list=1467327417&rft.eisbn_list=1467327433&rft.eisbn_list=9781467327435&rft_dat=%3Cieee_6IE%3E6505120%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-6d7432dcebaef586163b85c0537e4ab6c51d209be8e7dacceaf01b9889cc0a973%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6505120&rfr_iscdi=true |