Loading…

Mobile real-time EEG imaging Bayesian inference with sparse, temporally smooth source priors

EEG based real-time imaging of human brain function has many potential applications including quality control, in-line experimental design, brain state decoding, and neuro-feedback. In mobile applications these possibilities are attractive as elements in systems for personal state monitoring and wel...

Full description

Saved in:
Bibliographic Details
Main Authors: Hansen, L. K., Hansen, S. T., Stahlhut, C.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 7
container_issue
container_start_page 6
container_title
container_volume
creator Hansen, L. K.
Hansen, S. T.
Stahlhut, C.
description EEG based real-time imaging of human brain function has many potential applications including quality control, in-line experimental design, brain state decoding, and neuro-feedback. In mobile applications these possibilities are attractive as elements in systems for personal state monitoring and well-being, and in clinical settings were patients may need imaging under quasi-natural conditions. Challenges related to the ill-posed nature of the EEG imaging problem escalate in mobile real-time systems and new algorithms and the use of meta-data may be necessary to succeed. Based on recent work (Delorme et al., 2011) we hypothesize that solutions of interest are sparse. We propose a new Markovian prior for temporally sparse solutions and a direct search for sparse solutions as implemented by the so-called "variational garrote" (Kappen, 2011). We show that the new prior and inference scheme leads to improved solutions over competing sparse Bayesian schemes based on the "multiple measurement vectors" approach.
doi_str_mv 10.1109/IWW-BCI.2013.6506608
format conference_proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6506608</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6506608</ieee_id><sourcerecordid>6506608</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-edfb5c346a5283ddccdac0a6fe66c0e886d47b5d4b6ec8934397f399dd0bd7843</originalsourceid><addsrcrecordid>eNpVkE1LAzEYhCMiKHV_gR7yA9z6psnm42iXtS5UvBR6EUo2ebdG9qMkK9J_b8VePA3DDM_AEHLPYM4YmMd6u82XZT1fAONzWYCUoC9IZpRmQipeGCXg8p_n_JpkKX0CwIkgGVM35P11bEKHNKLt8in0SKtqRUNv92HY06U9Ygp2oGFoMeLgkH6H6YOmg40JH-iE_WGMtuuONPXj-JuMX_HUOsQwxnRLrlrbJczOOiOb52pTvuTrt1VdPq3zYGDK0bdN4biQtlho7r1z3jqwskUpHaDW0gvVFF40Ep02XHCjWm6M99B4pQWfkbs_bEDE3Wm6t_G4O1_CfwB_CFb_</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Mobile real-time EEG imaging Bayesian inference with sparse, temporally smooth source priors</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Hansen, L. K. ; Hansen, S. T. ; Stahlhut, C.</creator><creatorcontrib>Hansen, L. K. ; Hansen, S. T. ; Stahlhut, C.</creatorcontrib><description>EEG based real-time imaging of human brain function has many potential applications including quality control, in-line experimental design, brain state decoding, and neuro-feedback. In mobile applications these possibilities are attractive as elements in systems for personal state monitoring and well-being, and in clinical settings were patients may need imaging under quasi-natural conditions. Challenges related to the ill-posed nature of the EEG imaging problem escalate in mobile real-time systems and new algorithms and the use of meta-data may be necessary to succeed. Based on recent work (Delorme et al., 2011) we hypothesize that solutions of interest are sparse. We propose a new Markovian prior for temporally sparse solutions and a direct search for sparse solutions as implemented by the so-called "variational garrote" (Kappen, 2011). We show that the new prior and inference scheme leads to improved solutions over competing sparse Bayesian schemes based on the "multiple measurement vectors" approach.</description><identifier>ISBN: 9781467359733</identifier><identifier>ISBN: 1467359734</identifier><identifier>EISBN: 9781467359740</identifier><identifier>EISBN: 1467359742</identifier><identifier>DOI: 10.1109/IWW-BCI.2013.6506608</identifier><language>eng</language><publisher>IEEE</publisher><subject>Bayes methods ; Brain modeling ; EEG ; Electroencephalography ; ill-posed inverse ; Imaging ; Monitoring ; real-time imaging ; Real-time systems ; Scalp ; temporal sparsity promoting prior</subject><ispartof>2013 International Winter Workshop on Brain-Computer Interface (BCI), 2013, p.6-7</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6506608$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6506608$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Hansen, L. K.</creatorcontrib><creatorcontrib>Hansen, S. T.</creatorcontrib><creatorcontrib>Stahlhut, C.</creatorcontrib><title>Mobile real-time EEG imaging Bayesian inference with sparse, temporally smooth source priors</title><title>2013 International Winter Workshop on Brain-Computer Interface (BCI)</title><addtitle>IWW-BCI</addtitle><description>EEG based real-time imaging of human brain function has many potential applications including quality control, in-line experimental design, brain state decoding, and neuro-feedback. In mobile applications these possibilities are attractive as elements in systems for personal state monitoring and well-being, and in clinical settings were patients may need imaging under quasi-natural conditions. Challenges related to the ill-posed nature of the EEG imaging problem escalate in mobile real-time systems and new algorithms and the use of meta-data may be necessary to succeed. Based on recent work (Delorme et al., 2011) we hypothesize that solutions of interest are sparse. We propose a new Markovian prior for temporally sparse solutions and a direct search for sparse solutions as implemented by the so-called "variational garrote" (Kappen, 2011). We show that the new prior and inference scheme leads to improved solutions over competing sparse Bayesian schemes based on the "multiple measurement vectors" approach.</description><subject>Bayes methods</subject><subject>Brain modeling</subject><subject>EEG</subject><subject>Electroencephalography</subject><subject>ill-posed inverse</subject><subject>Imaging</subject><subject>Monitoring</subject><subject>real-time imaging</subject><subject>Real-time systems</subject><subject>Scalp</subject><subject>temporal sparsity promoting prior</subject><isbn>9781467359733</isbn><isbn>1467359734</isbn><isbn>9781467359740</isbn><isbn>1467359742</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2013</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNpVkE1LAzEYhCMiKHV_gR7yA9z6psnm42iXtS5UvBR6EUo2ebdG9qMkK9J_b8VePA3DDM_AEHLPYM4YmMd6u82XZT1fAONzWYCUoC9IZpRmQipeGCXg8p_n_JpkKX0CwIkgGVM35P11bEKHNKLt8in0SKtqRUNv92HY06U9Ygp2oGFoMeLgkH6H6YOmg40JH-iE_WGMtuuONPXj-JuMX_HUOsQwxnRLrlrbJczOOiOb52pTvuTrt1VdPq3zYGDK0bdN4biQtlho7r1z3jqwskUpHaDW0gvVFF40Ep02XHCjWm6M99B4pQWfkbs_bEDE3Wm6t_G4O1_CfwB_CFb_</recordid><startdate>201302</startdate><enddate>201302</enddate><creator>Hansen, L. K.</creator><creator>Hansen, S. T.</creator><creator>Stahlhut, C.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201302</creationdate><title>Mobile real-time EEG imaging Bayesian inference with sparse, temporally smooth source priors</title><author>Hansen, L. K. ; Hansen, S. T. ; Stahlhut, C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-edfb5c346a5283ddccdac0a6fe66c0e886d47b5d4b6ec8934397f399dd0bd7843</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Bayes methods</topic><topic>Brain modeling</topic><topic>EEG</topic><topic>Electroencephalography</topic><topic>ill-posed inverse</topic><topic>Imaging</topic><topic>Monitoring</topic><topic>real-time imaging</topic><topic>Real-time systems</topic><topic>Scalp</topic><topic>temporal sparsity promoting prior</topic><toplevel>online_resources</toplevel><creatorcontrib>Hansen, L. K.</creatorcontrib><creatorcontrib>Hansen, S. T.</creatorcontrib><creatorcontrib>Stahlhut, C.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hansen, L. K.</au><au>Hansen, S. T.</au><au>Stahlhut, C.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Mobile real-time EEG imaging Bayesian inference with sparse, temporally smooth source priors</atitle><btitle>2013 International Winter Workshop on Brain-Computer Interface (BCI)</btitle><stitle>IWW-BCI</stitle><date>2013-02</date><risdate>2013</risdate><spage>6</spage><epage>7</epage><pages>6-7</pages><isbn>9781467359733</isbn><isbn>1467359734</isbn><eisbn>9781467359740</eisbn><eisbn>1467359742</eisbn><abstract>EEG based real-time imaging of human brain function has many potential applications including quality control, in-line experimental design, brain state decoding, and neuro-feedback. In mobile applications these possibilities are attractive as elements in systems for personal state monitoring and well-being, and in clinical settings were patients may need imaging under quasi-natural conditions. Challenges related to the ill-posed nature of the EEG imaging problem escalate in mobile real-time systems and new algorithms and the use of meta-data may be necessary to succeed. Based on recent work (Delorme et al., 2011) we hypothesize that solutions of interest are sparse. We propose a new Markovian prior for temporally sparse solutions and a direct search for sparse solutions as implemented by the so-called "variational garrote" (Kappen, 2011). We show that the new prior and inference scheme leads to improved solutions over competing sparse Bayesian schemes based on the "multiple measurement vectors" approach.</abstract><pub>IEEE</pub><doi>10.1109/IWW-BCI.2013.6506608</doi><tpages>2</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9781467359733
ispartof 2013 International Winter Workshop on Brain-Computer Interface (BCI), 2013, p.6-7
issn
language eng
recordid cdi_ieee_primary_6506608
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Bayes methods
Brain modeling
EEG
Electroencephalography
ill-posed inverse
Imaging
Monitoring
real-time imaging
Real-time systems
Scalp
temporal sparsity promoting prior
title Mobile real-time EEG imaging Bayesian inference with sparse, temporally smooth source priors
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T12%3A34%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Mobile%20real-time%20EEG%20imaging%20Bayesian%20inference%20with%20sparse,%20temporally%20smooth%20source%20priors&rft.btitle=2013%20International%20Winter%20Workshop%20on%20Brain-Computer%20Interface%20(BCI)&rft.au=Hansen,%20L.%20K.&rft.date=2013-02&rft.spage=6&rft.epage=7&rft.pages=6-7&rft.isbn=9781467359733&rft.isbn_list=1467359734&rft_id=info:doi/10.1109/IWW-BCI.2013.6506608&rft.eisbn=9781467359740&rft.eisbn_list=1467359742&rft_dat=%3Cieee_6IE%3E6506608%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i90t-edfb5c346a5283ddccdac0a6fe66c0e886d47b5d4b6ec8934397f399dd0bd7843%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6506608&rfr_iscdi=true