Loading…

Texture Enhanced Histogram Equalization Using TV- ^ Image Decomposition

Histogram transformation defines a class of image processing operations that are widely applied in the implementation of data normalization algorithms. In this paper, we present a new variational approach for image enhancement that is constructed to alleviate the intensity saturation effects that ar...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on image processing 2013-08, Vol.22 (8), p.3133-3144
Main Authors: Ghita, O., Ilea, D. E., Whelan, P. F.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c1367-3a791dec3d8b82a05a223b8c4ac071112247e6c2b9ea96d1726e93aba33c08583
cites cdi_FETCH-LOGICAL-c1367-3a791dec3d8b82a05a223b8c4ac071112247e6c2b9ea96d1726e93aba33c08583
container_end_page 3144
container_issue 8
container_start_page 3133
container_title IEEE transactions on image processing
container_volume 22
creator Ghita, O.
Ilea, D. E.
Whelan, P. F.
description Histogram transformation defines a class of image processing operations that are widely applied in the implementation of data normalization algorithms. In this paper, we present a new variational approach for image enhancement that is constructed to alleviate the intensity saturation effects that are introduced by standard contrast enhancement (CE) methods based on histogram equalization. In this paper, we initially apply total variation (TV) minimization with a L 1 fidelity term to decompose the input image with respect to cartoon and texture components. Contrary to previous papers that rely solely on the information encompassed in the distribution of the intensity information, in this paper, the texture information is also employed to emphasize the contribution of the local textural features in the CE process. This is achieved by implementing a nonlinear histogram warping CE strategy that is able to maximize the information content in the transformed image. Our experimental study addresses the CE of a wide variety of image data and comparative evaluations are provided to illustrate that our method produces better results than conventional CE strategies.
doi_str_mv 10.1109/TIP.2013.2259839
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_6509977</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6509977</ieee_id><sourcerecordid>2989806821</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1367-3a791dec3d8b82a05a223b8c4ac071112247e6c2b9ea96d1726e93aba33c08583</originalsourceid><addsrcrecordid>eNo9kM9LwzAUx4Mobk7vgpeA5868lzZpjjLnNhjoofNoSNNsdqztlrSg_vV2bHh6X3jfH_Ah5B7YGICpp2zxPkYGfIyYqJSrCzIEFUPEWIyXvWaJjCTEakBuQtgyBnEC4poMkItYIbIhmWXuu-28o9P6y9TWFXRehrbZeFPR6aEzu_LXtGVT01Uo6w3NPiL6SReV2Tj64mxT7ZtQHv-35GptdsHdne-IrF6n2WQeLd9mi8nzMrLAhYy4kQoKZ3mR5ikalhhEnqc2NpZJAECMpRMWc-WMEgVIFE5xkxvOLUuTlI_I46l375tD50Krt03n635S9wOJQIlS9i52clnfhODdWu99WRn_o4HpIzndk9NHcvpMro88nCKlc-7fLhKmVF_4B8AsZlg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1365627277</pqid></control><display><type>article</type><title>Texture Enhanced Histogram Equalization Using TV- ^ Image Decomposition</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Ghita, O. ; Ilea, D. E. ; Whelan, P. F.</creator><creatorcontrib>Ghita, O. ; Ilea, D. E. ; Whelan, P. F.</creatorcontrib><description>Histogram transformation defines a class of image processing operations that are widely applied in the implementation of data normalization algorithms. In this paper, we present a new variational approach for image enhancement that is constructed to alleviate the intensity saturation effects that are introduced by standard contrast enhancement (CE) methods based on histogram equalization. In this paper, we initially apply total variation (TV) minimization with a L 1 fidelity term to decompose the input image with respect to cartoon and texture components. Contrary to previous papers that rely solely on the information encompassed in the distribution of the intensity information, in this paper, the texture information is also employed to emphasize the contribution of the local textural features in the CE process. This is achieved by implementing a nonlinear histogram warping CE strategy that is able to maximize the information content in the transformed image. Our experimental study addresses the CE of a wide variety of image data and comparative evaluations are provided to illustrate that our method produces better results than conventional CE strategies.</description><identifier>ISSN: 1057-7149</identifier><identifier>EISSN: 1941-0042</identifier><identifier>DOI: 10.1109/TIP.2013.2259839</identifier><identifier>PMID: 23649220</identifier><identifier>CODEN: IIPRE4</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Contrast enhancement ; entropy maximization ; histogram warping ; image decomposition ; Studies ; TV- {\rm L}^{1}</subject><ispartof>IEEE transactions on image processing, 2013-08, Vol.22 (8), p.3133-3144</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Aug 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1367-3a791dec3d8b82a05a223b8c4ac071112247e6c2b9ea96d1726e93aba33c08583</citedby><cites>FETCH-LOGICAL-c1367-3a791dec3d8b82a05a223b8c4ac071112247e6c2b9ea96d1726e93aba33c08583</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6509977$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,54777</link.rule.ids></links><search><creatorcontrib>Ghita, O.</creatorcontrib><creatorcontrib>Ilea, D. E.</creatorcontrib><creatorcontrib>Whelan, P. F.</creatorcontrib><title>Texture Enhanced Histogram Equalization Using TV- ^ Image Decomposition</title><title>IEEE transactions on image processing</title><addtitle>TIP</addtitle><description>Histogram transformation defines a class of image processing operations that are widely applied in the implementation of data normalization algorithms. In this paper, we present a new variational approach for image enhancement that is constructed to alleviate the intensity saturation effects that are introduced by standard contrast enhancement (CE) methods based on histogram equalization. In this paper, we initially apply total variation (TV) minimization with a L 1 fidelity term to decompose the input image with respect to cartoon and texture components. Contrary to previous papers that rely solely on the information encompassed in the distribution of the intensity information, in this paper, the texture information is also employed to emphasize the contribution of the local textural features in the CE process. This is achieved by implementing a nonlinear histogram warping CE strategy that is able to maximize the information content in the transformed image. Our experimental study addresses the CE of a wide variety of image data and comparative evaluations are provided to illustrate that our method produces better results than conventional CE strategies.</description><subject>Contrast enhancement</subject><subject>entropy maximization</subject><subject>histogram warping</subject><subject>image decomposition</subject><subject>Studies</subject><subject>TV- {\rm L}^{1}</subject><issn>1057-7149</issn><issn>1941-0042</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNo9kM9LwzAUx4Mobk7vgpeA5868lzZpjjLnNhjoofNoSNNsdqztlrSg_vV2bHh6X3jfH_Ah5B7YGICpp2zxPkYGfIyYqJSrCzIEFUPEWIyXvWaJjCTEakBuQtgyBnEC4poMkItYIbIhmWXuu-28o9P6y9TWFXRehrbZeFPR6aEzu_LXtGVT01Uo6w3NPiL6SReV2Tj64mxT7ZtQHv-35GptdsHdne-IrF6n2WQeLd9mi8nzMrLAhYy4kQoKZ3mR5ikalhhEnqc2NpZJAECMpRMWc-WMEgVIFE5xkxvOLUuTlI_I46l375tD50Krt03n635S9wOJQIlS9i52clnfhODdWu99WRn_o4HpIzndk9NHcvpMro88nCKlc-7fLhKmVF_4B8AsZlg</recordid><startdate>201308</startdate><enddate>201308</enddate><creator>Ghita, O.</creator><creator>Ilea, D. E.</creator><creator>Whelan, P. F.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201308</creationdate><title>Texture Enhanced Histogram Equalization Using TV- ^ Image Decomposition</title><author>Ghita, O. ; Ilea, D. E. ; Whelan, P. F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1367-3a791dec3d8b82a05a223b8c4ac071112247e6c2b9ea96d1726e93aba33c08583</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Contrast enhancement</topic><topic>entropy maximization</topic><topic>histogram warping</topic><topic>image decomposition</topic><topic>Studies</topic><topic>TV- {\rm L}^{1}</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ghita, O.</creatorcontrib><creatorcontrib>Ilea, D. E.</creatorcontrib><creatorcontrib>Whelan, P. F.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on image processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ghita, O.</au><au>Ilea, D. E.</au><au>Whelan, P. F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Texture Enhanced Histogram Equalization Using TV- ^ Image Decomposition</atitle><jtitle>IEEE transactions on image processing</jtitle><stitle>TIP</stitle><date>2013-08</date><risdate>2013</risdate><volume>22</volume><issue>8</issue><spage>3133</spage><epage>3144</epage><pages>3133-3144</pages><issn>1057-7149</issn><eissn>1941-0042</eissn><coden>IIPRE4</coden><abstract>Histogram transformation defines a class of image processing operations that are widely applied in the implementation of data normalization algorithms. In this paper, we present a new variational approach for image enhancement that is constructed to alleviate the intensity saturation effects that are introduced by standard contrast enhancement (CE) methods based on histogram equalization. In this paper, we initially apply total variation (TV) minimization with a L 1 fidelity term to decompose the input image with respect to cartoon and texture components. Contrary to previous papers that rely solely on the information encompassed in the distribution of the intensity information, in this paper, the texture information is also employed to emphasize the contribution of the local textural features in the CE process. This is achieved by implementing a nonlinear histogram warping CE strategy that is able to maximize the information content in the transformed image. Our experimental study addresses the CE of a wide variety of image data and comparative evaluations are provided to illustrate that our method produces better results than conventional CE strategies.</abstract><cop>New York</cop><pub>IEEE</pub><pmid>23649220</pmid><doi>10.1109/TIP.2013.2259839</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1057-7149
ispartof IEEE transactions on image processing, 2013-08, Vol.22 (8), p.3133-3144
issn 1057-7149
1941-0042
language eng
recordid cdi_ieee_primary_6509977
source IEEE Electronic Library (IEL) Journals
subjects Contrast enhancement
entropy maximization
histogram warping
image decomposition
Studies
TV- {\rm L}^{1}
title Texture Enhanced Histogram Equalization Using TV- ^ Image Decomposition
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T01%3A19%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Texture%20Enhanced%20Histogram%20Equalization%20Using%20TV-%20%5E%20Image%20Decomposition&rft.jtitle=IEEE%20transactions%20on%20image%20processing&rft.au=Ghita,%20O.&rft.date=2013-08&rft.volume=22&rft.issue=8&rft.spage=3133&rft.epage=3144&rft.pages=3133-3144&rft.issn=1057-7149&rft.eissn=1941-0042&rft.coden=IIPRE4&rft_id=info:doi/10.1109/TIP.2013.2259839&rft_dat=%3Cproquest_ieee_%3E2989806821%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c1367-3a791dec3d8b82a05a223b8c4ac071112247e6c2b9ea96d1726e93aba33c08583%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1365627277&rft_id=info:pmid/23649220&rft_ieee_id=6509977&rfr_iscdi=true