Loading…
Texture Enhanced Histogram Equalization Using TV- ^ Image Decomposition
Histogram transformation defines a class of image processing operations that are widely applied in the implementation of data normalization algorithms. In this paper, we present a new variational approach for image enhancement that is constructed to alleviate the intensity saturation effects that ar...
Saved in:
Published in: | IEEE transactions on image processing 2013-08, Vol.22 (8), p.3133-3144 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c1367-3a791dec3d8b82a05a223b8c4ac071112247e6c2b9ea96d1726e93aba33c08583 |
---|---|
cites | cdi_FETCH-LOGICAL-c1367-3a791dec3d8b82a05a223b8c4ac071112247e6c2b9ea96d1726e93aba33c08583 |
container_end_page | 3144 |
container_issue | 8 |
container_start_page | 3133 |
container_title | IEEE transactions on image processing |
container_volume | 22 |
creator | Ghita, O. Ilea, D. E. Whelan, P. F. |
description | Histogram transformation defines a class of image processing operations that are widely applied in the implementation of data normalization algorithms. In this paper, we present a new variational approach for image enhancement that is constructed to alleviate the intensity saturation effects that are introduced by standard contrast enhancement (CE) methods based on histogram equalization. In this paper, we initially apply total variation (TV) minimization with a L 1 fidelity term to decompose the input image with respect to cartoon and texture components. Contrary to previous papers that rely solely on the information encompassed in the distribution of the intensity information, in this paper, the texture information is also employed to emphasize the contribution of the local textural features in the CE process. This is achieved by implementing a nonlinear histogram warping CE strategy that is able to maximize the information content in the transformed image. Our experimental study addresses the CE of a wide variety of image data and comparative evaluations are provided to illustrate that our method produces better results than conventional CE strategies. |
doi_str_mv | 10.1109/TIP.2013.2259839 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_6509977</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6509977</ieee_id><sourcerecordid>2989806821</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1367-3a791dec3d8b82a05a223b8c4ac071112247e6c2b9ea96d1726e93aba33c08583</originalsourceid><addsrcrecordid>eNo9kM9LwzAUx4Mobk7vgpeA5868lzZpjjLnNhjoofNoSNNsdqztlrSg_vV2bHh6X3jfH_Ah5B7YGICpp2zxPkYGfIyYqJSrCzIEFUPEWIyXvWaJjCTEakBuQtgyBnEC4poMkItYIbIhmWXuu-28o9P6y9TWFXRehrbZeFPR6aEzu_LXtGVT01Uo6w3NPiL6SReV2Tj64mxT7ZtQHv-35GptdsHdne-IrF6n2WQeLd9mi8nzMrLAhYy4kQoKZ3mR5ikalhhEnqc2NpZJAECMpRMWc-WMEgVIFE5xkxvOLUuTlI_I46l375tD50Krt03n635S9wOJQIlS9i52clnfhODdWu99WRn_o4HpIzndk9NHcvpMro88nCKlc-7fLhKmVF_4B8AsZlg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1365627277</pqid></control><display><type>article</type><title>Texture Enhanced Histogram Equalization Using TV- ^ Image Decomposition</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Ghita, O. ; Ilea, D. E. ; Whelan, P. F.</creator><creatorcontrib>Ghita, O. ; Ilea, D. E. ; Whelan, P. F.</creatorcontrib><description>Histogram transformation defines a class of image processing operations that are widely applied in the implementation of data normalization algorithms. In this paper, we present a new variational approach for image enhancement that is constructed to alleviate the intensity saturation effects that are introduced by standard contrast enhancement (CE) methods based on histogram equalization. In this paper, we initially apply total variation (TV) minimization with a L 1 fidelity term to decompose the input image with respect to cartoon and texture components. Contrary to previous papers that rely solely on the information encompassed in the distribution of the intensity information, in this paper, the texture information is also employed to emphasize the contribution of the local textural features in the CE process. This is achieved by implementing a nonlinear histogram warping CE strategy that is able to maximize the information content in the transformed image. Our experimental study addresses the CE of a wide variety of image data and comparative evaluations are provided to illustrate that our method produces better results than conventional CE strategies.</description><identifier>ISSN: 1057-7149</identifier><identifier>EISSN: 1941-0042</identifier><identifier>DOI: 10.1109/TIP.2013.2259839</identifier><identifier>PMID: 23649220</identifier><identifier>CODEN: IIPRE4</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Contrast enhancement ; entropy maximization ; histogram warping ; image decomposition ; Studies ; TV- {\rm L}^{1}</subject><ispartof>IEEE transactions on image processing, 2013-08, Vol.22 (8), p.3133-3144</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Aug 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1367-3a791dec3d8b82a05a223b8c4ac071112247e6c2b9ea96d1726e93aba33c08583</citedby><cites>FETCH-LOGICAL-c1367-3a791dec3d8b82a05a223b8c4ac071112247e6c2b9ea96d1726e93aba33c08583</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6509977$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,54777</link.rule.ids></links><search><creatorcontrib>Ghita, O.</creatorcontrib><creatorcontrib>Ilea, D. E.</creatorcontrib><creatorcontrib>Whelan, P. F.</creatorcontrib><title>Texture Enhanced Histogram Equalization Using TV- ^ Image Decomposition</title><title>IEEE transactions on image processing</title><addtitle>TIP</addtitle><description>Histogram transformation defines a class of image processing operations that are widely applied in the implementation of data normalization algorithms. In this paper, we present a new variational approach for image enhancement that is constructed to alleviate the intensity saturation effects that are introduced by standard contrast enhancement (CE) methods based on histogram equalization. In this paper, we initially apply total variation (TV) minimization with a L 1 fidelity term to decompose the input image with respect to cartoon and texture components. Contrary to previous papers that rely solely on the information encompassed in the distribution of the intensity information, in this paper, the texture information is also employed to emphasize the contribution of the local textural features in the CE process. This is achieved by implementing a nonlinear histogram warping CE strategy that is able to maximize the information content in the transformed image. Our experimental study addresses the CE of a wide variety of image data and comparative evaluations are provided to illustrate that our method produces better results than conventional CE strategies.</description><subject>Contrast enhancement</subject><subject>entropy maximization</subject><subject>histogram warping</subject><subject>image decomposition</subject><subject>Studies</subject><subject>TV- {\rm L}^{1}</subject><issn>1057-7149</issn><issn>1941-0042</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNo9kM9LwzAUx4Mobk7vgpeA5868lzZpjjLnNhjoofNoSNNsdqztlrSg_vV2bHh6X3jfH_Ah5B7YGICpp2zxPkYGfIyYqJSrCzIEFUPEWIyXvWaJjCTEakBuQtgyBnEC4poMkItYIbIhmWXuu-28o9P6y9TWFXRehrbZeFPR6aEzu_LXtGVT01Uo6w3NPiL6SReV2Tj64mxT7ZtQHv-35GptdsHdne-IrF6n2WQeLd9mi8nzMrLAhYy4kQoKZ3mR5ikalhhEnqc2NpZJAECMpRMWc-WMEgVIFE5xkxvOLUuTlI_I46l375tD50Krt03n635S9wOJQIlS9i52clnfhODdWu99WRn_o4HpIzndk9NHcvpMro88nCKlc-7fLhKmVF_4B8AsZlg</recordid><startdate>201308</startdate><enddate>201308</enddate><creator>Ghita, O.</creator><creator>Ilea, D. E.</creator><creator>Whelan, P. F.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201308</creationdate><title>Texture Enhanced Histogram Equalization Using TV- ^ Image Decomposition</title><author>Ghita, O. ; Ilea, D. E. ; Whelan, P. F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1367-3a791dec3d8b82a05a223b8c4ac071112247e6c2b9ea96d1726e93aba33c08583</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Contrast enhancement</topic><topic>entropy maximization</topic><topic>histogram warping</topic><topic>image decomposition</topic><topic>Studies</topic><topic>TV- {\rm L}^{1}</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ghita, O.</creatorcontrib><creatorcontrib>Ilea, D. E.</creatorcontrib><creatorcontrib>Whelan, P. F.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on image processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ghita, O.</au><au>Ilea, D. E.</au><au>Whelan, P. F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Texture Enhanced Histogram Equalization Using TV- ^ Image Decomposition</atitle><jtitle>IEEE transactions on image processing</jtitle><stitle>TIP</stitle><date>2013-08</date><risdate>2013</risdate><volume>22</volume><issue>8</issue><spage>3133</spage><epage>3144</epage><pages>3133-3144</pages><issn>1057-7149</issn><eissn>1941-0042</eissn><coden>IIPRE4</coden><abstract>Histogram transformation defines a class of image processing operations that are widely applied in the implementation of data normalization algorithms. In this paper, we present a new variational approach for image enhancement that is constructed to alleviate the intensity saturation effects that are introduced by standard contrast enhancement (CE) methods based on histogram equalization. In this paper, we initially apply total variation (TV) minimization with a L 1 fidelity term to decompose the input image with respect to cartoon and texture components. Contrary to previous papers that rely solely on the information encompassed in the distribution of the intensity information, in this paper, the texture information is also employed to emphasize the contribution of the local textural features in the CE process. This is achieved by implementing a nonlinear histogram warping CE strategy that is able to maximize the information content in the transformed image. Our experimental study addresses the CE of a wide variety of image data and comparative evaluations are provided to illustrate that our method produces better results than conventional CE strategies.</abstract><cop>New York</cop><pub>IEEE</pub><pmid>23649220</pmid><doi>10.1109/TIP.2013.2259839</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1057-7149 |
ispartof | IEEE transactions on image processing, 2013-08, Vol.22 (8), p.3133-3144 |
issn | 1057-7149 1941-0042 |
language | eng |
recordid | cdi_ieee_primary_6509977 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Contrast enhancement entropy maximization histogram warping image decomposition Studies TV- {\rm L}^{1} |
title | Texture Enhanced Histogram Equalization Using TV- ^ Image Decomposition |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T01%3A19%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Texture%20Enhanced%20Histogram%20Equalization%20Using%20TV-%20%5E%20Image%20Decomposition&rft.jtitle=IEEE%20transactions%20on%20image%20processing&rft.au=Ghita,%20O.&rft.date=2013-08&rft.volume=22&rft.issue=8&rft.spage=3133&rft.epage=3144&rft.pages=3133-3144&rft.issn=1057-7149&rft.eissn=1941-0042&rft.coden=IIPRE4&rft_id=info:doi/10.1109/TIP.2013.2259839&rft_dat=%3Cproquest_ieee_%3E2989806821%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c1367-3a791dec3d8b82a05a223b8c4ac071112247e6c2b9ea96d1726e93aba33c08583%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1365627277&rft_id=info:pmid/23649220&rft_ieee_id=6509977&rfr_iscdi=true |