Loading…
Personalized News Recommendation Based on Collaborative Filtering
Because of the abundance of news on the web, news recommendation is an important problem. We compare three approaches for personalized news recommendation: collaborative filtering at the level of news items, content-based system recommending items with similar topics, and a hybrid technique. We obse...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 441 |
container_issue | |
container_start_page | 437 |
container_title | |
container_volume | 1 |
creator | Garcin, F. Zhou, K. Faltings, B. Schickel, V. |
description | Because of the abundance of news on the web, news recommendation is an important problem. We compare three approaches for personalized news recommendation: collaborative filtering at the level of news items, content-based system recommending items with similar topics, and a hybrid technique. We observe that recommending items according to the topic profile of the current browsing session seems to give poor results. Although news articles change frequently and thus data about their popularity is sparse, collaborative filtering applied to individual articles provides the best results. |
doi_str_mv | 10.1109/WI-IAT.2012.95 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6511920</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6511920</ieee_id><sourcerecordid>6511920</sourcerecordid><originalsourceid>FETCH-LOGICAL-i215t-37c623216b0e5c88b2b49b9febe0bd76e0fde52807e36ced5d5589dc8c6537d43</originalsourceid><addsrcrecordid>eNotjEtLxDAURiMiqGO3btz0D7TeJM1rWYujhUFFRlwOedxKpA9piqK_3oKuvsM58BFySaGkFMz1a1u09b5kQFlpxBE5ByWNqLQGeUwyozStpOIShDKnJEvpHQAocEGBnpH6Cec0jbaPPxjyB_xK-TP6aRhwDHaJ05jf2LSWFZqp762b5lV_Yr6N_YJzHN8uyEln-4TZ_27Iy_Z239wXu8e7tql3RWRULAVXXjLOqHSAwmvtmKuMMx06BBeUROgCCqZBIZcegwhCaBO89lJwFSq-IVd_vxERDx9zHOz8fZCCUsOA_wLNP0re</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Personalized News Recommendation Based on Collaborative Filtering</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Garcin, F. ; Zhou, K. ; Faltings, B. ; Schickel, V.</creator><creatorcontrib>Garcin, F. ; Zhou, K. ; Faltings, B. ; Schickel, V.</creatorcontrib><description>Because of the abundance of news on the web, news recommendation is an important problem. We compare three approaches for personalized news recommendation: collaborative filtering at the level of news items, content-based system recommending items with similar topics, and a hybrid technique. We observe that recommending items according to the topic profile of the current browsing session seems to give poor results. Although news articles change frequently and thus data about their popularity is sparse, collaborative filtering applied to individual articles provides the best results.</description><identifier>ISBN: 9781467360579</identifier><identifier>ISBN: 1467360570</identifier><identifier>EISBN: 0769548806</identifier><identifier>EISBN: 9780769548807</identifier><identifier>DOI: 10.1109/WI-IAT.2012.95</identifier><identifier>CODEN: IEEPAD</identifier><language>eng</language><publisher>IEEE</publisher><subject>collaborative filtering ; news recommendation</subject><ispartof>2012 IEEE/WIC/ACM International Conferences on Web Intelligence and Intelligent Agent Technology, 2012, Vol.1, p.437-441</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6511920$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27901,54894</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6511920$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Garcin, F.</creatorcontrib><creatorcontrib>Zhou, K.</creatorcontrib><creatorcontrib>Faltings, B.</creatorcontrib><creatorcontrib>Schickel, V.</creatorcontrib><title>Personalized News Recommendation Based on Collaborative Filtering</title><title>2012 IEEE/WIC/ACM International Conferences on Web Intelligence and Intelligent Agent Technology</title><addtitle>wi-iat</addtitle><description>Because of the abundance of news on the web, news recommendation is an important problem. We compare three approaches for personalized news recommendation: collaborative filtering at the level of news items, content-based system recommending items with similar topics, and a hybrid technique. We observe that recommending items according to the topic profile of the current browsing session seems to give poor results. Although news articles change frequently and thus data about their popularity is sparse, collaborative filtering applied to individual articles provides the best results.</description><subject>collaborative filtering</subject><subject>news recommendation</subject><isbn>9781467360579</isbn><isbn>1467360570</isbn><isbn>0769548806</isbn><isbn>9780769548807</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotjEtLxDAURiMiqGO3btz0D7TeJM1rWYujhUFFRlwOedxKpA9piqK_3oKuvsM58BFySaGkFMz1a1u09b5kQFlpxBE5ByWNqLQGeUwyozStpOIShDKnJEvpHQAocEGBnpH6Cec0jbaPPxjyB_xK-TP6aRhwDHaJ05jf2LSWFZqp762b5lV_Yr6N_YJzHN8uyEln-4TZ_27Iy_Z239wXu8e7tql3RWRULAVXXjLOqHSAwmvtmKuMMx06BBeUROgCCqZBIZcegwhCaBO89lJwFSq-IVd_vxERDx9zHOz8fZCCUsOA_wLNP0re</recordid><startdate>20120101</startdate><enddate>20120101</enddate><creator>Garcin, F.</creator><creator>Zhou, K.</creator><creator>Faltings, B.</creator><creator>Schickel, V.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20120101</creationdate><title>Personalized News Recommendation Based on Collaborative Filtering</title><author>Garcin, F. ; Zhou, K. ; Faltings, B. ; Schickel, V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i215t-37c623216b0e5c88b2b49b9febe0bd76e0fde52807e36ced5d5589dc8c6537d43</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>collaborative filtering</topic><topic>news recommendation</topic><toplevel>online_resources</toplevel><creatorcontrib>Garcin, F.</creatorcontrib><creatorcontrib>Zhou, K.</creatorcontrib><creatorcontrib>Faltings, B.</creatorcontrib><creatorcontrib>Schickel, V.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Garcin, F.</au><au>Zhou, K.</au><au>Faltings, B.</au><au>Schickel, V.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Personalized News Recommendation Based on Collaborative Filtering</atitle><btitle>2012 IEEE/WIC/ACM International Conferences on Web Intelligence and Intelligent Agent Technology</btitle><stitle>wi-iat</stitle><date>2012-01-01</date><risdate>2012</risdate><volume>1</volume><spage>437</spage><epage>441</epage><pages>437-441</pages><isbn>9781467360579</isbn><isbn>1467360570</isbn><eisbn>0769548806</eisbn><eisbn>9780769548807</eisbn><coden>IEEPAD</coden><abstract>Because of the abundance of news on the web, news recommendation is an important problem. We compare three approaches for personalized news recommendation: collaborative filtering at the level of news items, content-based system recommending items with similar topics, and a hybrid technique. We observe that recommending items according to the topic profile of the current browsing session seems to give poor results. Although news articles change frequently and thus data about their popularity is sparse, collaborative filtering applied to individual articles provides the best results.</abstract><pub>IEEE</pub><doi>10.1109/WI-IAT.2012.95</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 9781467360579 |
ispartof | 2012 IEEE/WIC/ACM International Conferences on Web Intelligence and Intelligent Agent Technology, 2012, Vol.1, p.437-441 |
issn | |
language | eng |
recordid | cdi_ieee_primary_6511920 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | collaborative filtering news recommendation |
title | Personalized News Recommendation Based on Collaborative Filtering |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-24T11%3A34%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Personalized%20News%20Recommendation%20Based%20on%20Collaborative%20Filtering&rft.btitle=2012%20IEEE/WIC/ACM%20International%20Conferences%20on%20Web%20Intelligence%20and%20Intelligent%20Agent%20Technology&rft.au=Garcin,%20F.&rft.date=2012-01-01&rft.volume=1&rft.spage=437&rft.epage=441&rft.pages=437-441&rft.isbn=9781467360579&rft.isbn_list=1467360570&rft.coden=IEEPAD&rft_id=info:doi/10.1109/WI-IAT.2012.95&rft.eisbn=0769548806&rft.eisbn_list=9780769548807&rft_dat=%3Cieee_6IE%3E6511920%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i215t-37c623216b0e5c88b2b49b9febe0bd76e0fde52807e36ced5d5589dc8c6537d43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6511920&rfr_iscdi=true |