Loading…

Personalized News Recommendation Based on Collaborative Filtering

Because of the abundance of news on the web, news recommendation is an important problem. We compare three approaches for personalized news recommendation: collaborative filtering at the level of news items, content-based system recommending items with similar topics, and a hybrid technique. We obse...

Full description

Saved in:
Bibliographic Details
Main Authors: Garcin, F., Zhou, K., Faltings, B., Schickel, V.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 441
container_issue
container_start_page 437
container_title
container_volume 1
creator Garcin, F.
Zhou, K.
Faltings, B.
Schickel, V.
description Because of the abundance of news on the web, news recommendation is an important problem. We compare three approaches for personalized news recommendation: collaborative filtering at the level of news items, content-based system recommending items with similar topics, and a hybrid technique. We observe that recommending items according to the topic profile of the current browsing session seems to give poor results. Although news articles change frequently and thus data about their popularity is sparse, collaborative filtering applied to individual articles provides the best results.
doi_str_mv 10.1109/WI-IAT.2012.95
format conference_proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6511920</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6511920</ieee_id><sourcerecordid>6511920</sourcerecordid><originalsourceid>FETCH-LOGICAL-i215t-37c623216b0e5c88b2b49b9febe0bd76e0fde52807e36ced5d5589dc8c6537d43</originalsourceid><addsrcrecordid>eNotjEtLxDAURiMiqGO3btz0D7TeJM1rWYujhUFFRlwOedxKpA9piqK_3oKuvsM58BFySaGkFMz1a1u09b5kQFlpxBE5ByWNqLQGeUwyozStpOIShDKnJEvpHQAocEGBnpH6Cec0jbaPPxjyB_xK-TP6aRhwDHaJ05jf2LSWFZqp762b5lV_Yr6N_YJzHN8uyEln-4TZ_27Iy_Z239wXu8e7tql3RWRULAVXXjLOqHSAwmvtmKuMMx06BBeUROgCCqZBIZcegwhCaBO89lJwFSq-IVd_vxERDx9zHOz8fZCCUsOA_wLNP0re</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Personalized News Recommendation Based on Collaborative Filtering</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Garcin, F. ; Zhou, K. ; Faltings, B. ; Schickel, V.</creator><creatorcontrib>Garcin, F. ; Zhou, K. ; Faltings, B. ; Schickel, V.</creatorcontrib><description>Because of the abundance of news on the web, news recommendation is an important problem. We compare three approaches for personalized news recommendation: collaborative filtering at the level of news items, content-based system recommending items with similar topics, and a hybrid technique. We observe that recommending items according to the topic profile of the current browsing session seems to give poor results. Although news articles change frequently and thus data about their popularity is sparse, collaborative filtering applied to individual articles provides the best results.</description><identifier>ISBN: 9781467360579</identifier><identifier>ISBN: 1467360570</identifier><identifier>EISBN: 0769548806</identifier><identifier>EISBN: 9780769548807</identifier><identifier>DOI: 10.1109/WI-IAT.2012.95</identifier><identifier>CODEN: IEEPAD</identifier><language>eng</language><publisher>IEEE</publisher><subject>collaborative filtering ; news recommendation</subject><ispartof>2012 IEEE/WIC/ACM International Conferences on Web Intelligence and Intelligent Agent Technology, 2012, Vol.1, p.437-441</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6511920$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27901,54894</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6511920$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Garcin, F.</creatorcontrib><creatorcontrib>Zhou, K.</creatorcontrib><creatorcontrib>Faltings, B.</creatorcontrib><creatorcontrib>Schickel, V.</creatorcontrib><title>Personalized News Recommendation Based on Collaborative Filtering</title><title>2012 IEEE/WIC/ACM International Conferences on Web Intelligence and Intelligent Agent Technology</title><addtitle>wi-iat</addtitle><description>Because of the abundance of news on the web, news recommendation is an important problem. We compare three approaches for personalized news recommendation: collaborative filtering at the level of news items, content-based system recommending items with similar topics, and a hybrid technique. We observe that recommending items according to the topic profile of the current browsing session seems to give poor results. Although news articles change frequently and thus data about their popularity is sparse, collaborative filtering applied to individual articles provides the best results.</description><subject>collaborative filtering</subject><subject>news recommendation</subject><isbn>9781467360579</isbn><isbn>1467360570</isbn><isbn>0769548806</isbn><isbn>9780769548807</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotjEtLxDAURiMiqGO3btz0D7TeJM1rWYujhUFFRlwOedxKpA9piqK_3oKuvsM58BFySaGkFMz1a1u09b5kQFlpxBE5ByWNqLQGeUwyozStpOIShDKnJEvpHQAocEGBnpH6Cec0jbaPPxjyB_xK-TP6aRhwDHaJ05jf2LSWFZqp762b5lV_Yr6N_YJzHN8uyEln-4TZ_27Iy_Z239wXu8e7tql3RWRULAVXXjLOqHSAwmvtmKuMMx06BBeUROgCCqZBIZcegwhCaBO89lJwFSq-IVd_vxERDx9zHOz8fZCCUsOA_wLNP0re</recordid><startdate>20120101</startdate><enddate>20120101</enddate><creator>Garcin, F.</creator><creator>Zhou, K.</creator><creator>Faltings, B.</creator><creator>Schickel, V.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20120101</creationdate><title>Personalized News Recommendation Based on Collaborative Filtering</title><author>Garcin, F. ; Zhou, K. ; Faltings, B. ; Schickel, V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i215t-37c623216b0e5c88b2b49b9febe0bd76e0fde52807e36ced5d5589dc8c6537d43</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>collaborative filtering</topic><topic>news recommendation</topic><toplevel>online_resources</toplevel><creatorcontrib>Garcin, F.</creatorcontrib><creatorcontrib>Zhou, K.</creatorcontrib><creatorcontrib>Faltings, B.</creatorcontrib><creatorcontrib>Schickel, V.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Garcin, F.</au><au>Zhou, K.</au><au>Faltings, B.</au><au>Schickel, V.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Personalized News Recommendation Based on Collaborative Filtering</atitle><btitle>2012 IEEE/WIC/ACM International Conferences on Web Intelligence and Intelligent Agent Technology</btitle><stitle>wi-iat</stitle><date>2012-01-01</date><risdate>2012</risdate><volume>1</volume><spage>437</spage><epage>441</epage><pages>437-441</pages><isbn>9781467360579</isbn><isbn>1467360570</isbn><eisbn>0769548806</eisbn><eisbn>9780769548807</eisbn><coden>IEEPAD</coden><abstract>Because of the abundance of news on the web, news recommendation is an important problem. We compare three approaches for personalized news recommendation: collaborative filtering at the level of news items, content-based system recommending items with similar topics, and a hybrid technique. We observe that recommending items according to the topic profile of the current browsing session seems to give poor results. Although news articles change frequently and thus data about their popularity is sparse, collaborative filtering applied to individual articles provides the best results.</abstract><pub>IEEE</pub><doi>10.1109/WI-IAT.2012.95</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9781467360579
ispartof 2012 IEEE/WIC/ACM International Conferences on Web Intelligence and Intelligent Agent Technology, 2012, Vol.1, p.437-441
issn
language eng
recordid cdi_ieee_primary_6511920
source IEEE Electronic Library (IEL) Conference Proceedings
subjects collaborative filtering
news recommendation
title Personalized News Recommendation Based on Collaborative Filtering
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-24T11%3A34%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Personalized%20News%20Recommendation%20Based%20on%20Collaborative%20Filtering&rft.btitle=2012%20IEEE/WIC/ACM%20International%20Conferences%20on%20Web%20Intelligence%20and%20Intelligent%20Agent%20Technology&rft.au=Garcin,%20F.&rft.date=2012-01-01&rft.volume=1&rft.spage=437&rft.epage=441&rft.pages=437-441&rft.isbn=9781467360579&rft.isbn_list=1467360570&rft.coden=IEEPAD&rft_id=info:doi/10.1109/WI-IAT.2012.95&rft.eisbn=0769548806&rft.eisbn_list=9780769548807&rft_dat=%3Cieee_6IE%3E6511920%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i215t-37c623216b0e5c88b2b49b9febe0bd76e0fde52807e36ced5d5589dc8c6537d43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6511920&rfr_iscdi=true