Loading…

Application of fuzzy support vector machine for determining the health index of the insulation system of in-service power transformers

With the integration of data and information obtained from a variety of chemical and electrical tests on transformer insulating oil, it is possible to evaluate the health condition of the insulation system of an in-service power transformer. This paper develops an intelligent algorithm for automatic...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on dielectrics and electrical insulation 2013-06, Vol.20 (3), p.965-973
Main Authors: Ashkezari, A. D., Hui Ma, Saha, T. K., Ekanayake, C.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c417t-eaf22d4a1f824c2aabd38f0745f99c3d43f9555ac84dcd5cb52a8894032ac5073
cites cdi_FETCH-LOGICAL-c417t-eaf22d4a1f824c2aabd38f0745f99c3d43f9555ac84dcd5cb52a8894032ac5073
container_end_page 973
container_issue 3
container_start_page 965
container_title IEEE transactions on dielectrics and electrical insulation
container_volume 20
creator Ashkezari, A. D.
Hui Ma
Saha, T. K.
Ekanayake, C.
description With the integration of data and information obtained from a variety of chemical and electrical tests on transformer insulating oil, it is possible to evaluate the health condition of the insulation system of an in-service power transformer. This paper develops an intelligent algorithm for automatically processing the data collected from oil tests and determining a health index for the transformer insulation system. This intelligent algorithm adopts a fuzzy support vector machine (FSVM) approach, which constructs a statistical model using a training database based on the historic data collected from 181 in-service power transformers. The procedure of constructing the training database, the formulation and implementation of FSVM and the data preprocessing methods for dealing with a class imbalanced training database is presented in this paper. Numerical experiments are also conducted to evaluate the performance of the algorithms developed in the paper.
doi_str_mv 10.1109/TDEI.2013.6518966
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_6518966</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6518966</ieee_id><sourcerecordid>2989212271</sourcerecordid><originalsourceid>FETCH-LOGICAL-c417t-eaf22d4a1f824c2aabd38f0745f99c3d43f9555ac84dcd5cb52a8894032ac5073</originalsourceid><addsrcrecordid>eNpdkbtO7DAQhi0EErDwAIjGEs1psviaOCXiLBcJiQbqyDhj1iixg-1wWB6A5ybRwimoZjTzzaeRfoROKFlSSurzh7-r2yUjlC9LSVVdljvogEqpCkG53J16UpGiVpXaR4cpvRBChWTlAfq8GIbOGZ1d8DhYbMePjw1O4zCEmPEbmBwi7rVZOw_YTn0LGWLvvPPPOK8Br0F3eY2db-F9Fswz59PYbZVpkzL088L5IkF8cwbwEP5BxDlqnyZlDzEdoT2ruwTH33WBHq9WD5c3xd399e3lxV1hBK1yAdoy1gpNrWLCMK2fWq4sqYS0dW14K7itpZTaKNGaVponybRStSCcaSNJxRfoz9Y7xPA6QspN75KBrtMewpgayitWSsEpm9CzX-hLGKOfvpuoUjJG5eRdILqlTAwpRbDNEF2v46ahpJmTaeZkmjmZ5juZ6eZ0e-MA4D__s_0Co_aM9Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1365221540</pqid></control><display><type>article</type><title>Application of fuzzy support vector machine for determining the health index of the insulation system of in-service power transformers</title><source>IEEE Xplore (Online service)</source><creator>Ashkezari, A. D. ; Hui Ma ; Saha, T. K. ; Ekanayake, C.</creator><creatorcontrib>Ashkezari, A. D. ; Hui Ma ; Saha, T. K. ; Ekanayake, C.</creatorcontrib><description>With the integration of data and information obtained from a variety of chemical and electrical tests on transformer insulating oil, it is possible to evaluate the health condition of the insulation system of an in-service power transformer. This paper develops an intelligent algorithm for automatically processing the data collected from oil tests and determining a health index for the transformer insulation system. This intelligent algorithm adopts a fuzzy support vector machine (FSVM) approach, which constructs a statistical model using a training database based on the historic data collected from 181 in-service power transformers. The procedure of constructing the training database, the formulation and implementation of FSVM and the data preprocessing methods for dealing with a class imbalanced training database is presented in this paper. Numerical experiments are also conducted to evaluate the performance of the algorithms developed in the paper.</description><identifier>ISSN: 1070-9878</identifier><identifier>EISSN: 1558-4135</identifier><identifier>DOI: 10.1109/TDEI.2013.6518966</identifier><identifier>CODEN: ITDIES</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Condition assessment of transformer ; Electric power generation ; Fuzzy ; fuzzy support vector machine (FSVM) ; Health ; health index ; Indexes ; Insulation ; insulation system ; Oil insulation ; oil test ; power transformer ; Power transformer insulation ; support vector machine (SVM) ; Support vector machines ; Training ; Transformers</subject><ispartof>IEEE transactions on dielectrics and electrical insulation, 2013-06, Vol.20 (3), p.965-973</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jun 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c417t-eaf22d4a1f824c2aabd38f0745f99c3d43f9555ac84dcd5cb52a8894032ac5073</citedby><cites>FETCH-LOGICAL-c417t-eaf22d4a1f824c2aabd38f0745f99c3d43f9555ac84dcd5cb52a8894032ac5073</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6518966$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Ashkezari, A. D.</creatorcontrib><creatorcontrib>Hui Ma</creatorcontrib><creatorcontrib>Saha, T. K.</creatorcontrib><creatorcontrib>Ekanayake, C.</creatorcontrib><title>Application of fuzzy support vector machine for determining the health index of the insulation system of in-service power transformers</title><title>IEEE transactions on dielectrics and electrical insulation</title><addtitle>T-DEI</addtitle><description>With the integration of data and information obtained from a variety of chemical and electrical tests on transformer insulating oil, it is possible to evaluate the health condition of the insulation system of an in-service power transformer. This paper develops an intelligent algorithm for automatically processing the data collected from oil tests and determining a health index for the transformer insulation system. This intelligent algorithm adopts a fuzzy support vector machine (FSVM) approach, which constructs a statistical model using a training database based on the historic data collected from 181 in-service power transformers. The procedure of constructing the training database, the formulation and implementation of FSVM and the data preprocessing methods for dealing with a class imbalanced training database is presented in this paper. Numerical experiments are also conducted to evaluate the performance of the algorithms developed in the paper.</description><subject>Algorithms</subject><subject>Condition assessment of transformer</subject><subject>Electric power generation</subject><subject>Fuzzy</subject><subject>fuzzy support vector machine (FSVM)</subject><subject>Health</subject><subject>health index</subject><subject>Indexes</subject><subject>Insulation</subject><subject>insulation system</subject><subject>Oil insulation</subject><subject>oil test</subject><subject>power transformer</subject><subject>Power transformer insulation</subject><subject>support vector machine (SVM)</subject><subject>Support vector machines</subject><subject>Training</subject><subject>Transformers</subject><issn>1070-9878</issn><issn>1558-4135</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNpdkbtO7DAQhi0EErDwAIjGEs1psviaOCXiLBcJiQbqyDhj1iixg-1wWB6A5ybRwimoZjTzzaeRfoROKFlSSurzh7-r2yUjlC9LSVVdljvogEqpCkG53J16UpGiVpXaR4cpvRBChWTlAfq8GIbOGZ1d8DhYbMePjw1O4zCEmPEbmBwi7rVZOw_YTn0LGWLvvPPPOK8Br0F3eY2db-F9Fswz59PYbZVpkzL088L5IkF8cwbwEP5BxDlqnyZlDzEdoT2ruwTH33WBHq9WD5c3xd399e3lxV1hBK1yAdoy1gpNrWLCMK2fWq4sqYS0dW14K7itpZTaKNGaVponybRStSCcaSNJxRfoz9Y7xPA6QspN75KBrtMewpgayitWSsEpm9CzX-hLGKOfvpuoUjJG5eRdILqlTAwpRbDNEF2v46ahpJmTaeZkmjmZ5juZ6eZ0e-MA4D__s_0Co_aM9Q</recordid><startdate>20130601</startdate><enddate>20130601</enddate><creator>Ashkezari, A. D.</creator><creator>Hui Ma</creator><creator>Saha, T. K.</creator><creator>Ekanayake, C.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20130601</creationdate><title>Application of fuzzy support vector machine for determining the health index of the insulation system of in-service power transformers</title><author>Ashkezari, A. D. ; Hui Ma ; Saha, T. K. ; Ekanayake, C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c417t-eaf22d4a1f824c2aabd38f0745f99c3d43f9555ac84dcd5cb52a8894032ac5073</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Algorithms</topic><topic>Condition assessment of transformer</topic><topic>Electric power generation</topic><topic>Fuzzy</topic><topic>fuzzy support vector machine (FSVM)</topic><topic>Health</topic><topic>health index</topic><topic>Indexes</topic><topic>Insulation</topic><topic>insulation system</topic><topic>Oil insulation</topic><topic>oil test</topic><topic>power transformer</topic><topic>Power transformer insulation</topic><topic>support vector machine (SVM)</topic><topic>Support vector machines</topic><topic>Training</topic><topic>Transformers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ashkezari, A. D.</creatorcontrib><creatorcontrib>Hui Ma</creatorcontrib><creatorcontrib>Saha, T. K.</creatorcontrib><creatorcontrib>Ekanayake, C.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Electronic Library Online</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on dielectrics and electrical insulation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ashkezari, A. D.</au><au>Hui Ma</au><au>Saha, T. K.</au><au>Ekanayake, C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Application of fuzzy support vector machine for determining the health index of the insulation system of in-service power transformers</atitle><jtitle>IEEE transactions on dielectrics and electrical insulation</jtitle><stitle>T-DEI</stitle><date>2013-06-01</date><risdate>2013</risdate><volume>20</volume><issue>3</issue><spage>965</spage><epage>973</epage><pages>965-973</pages><issn>1070-9878</issn><eissn>1558-4135</eissn><coden>ITDIES</coden><abstract>With the integration of data and information obtained from a variety of chemical and electrical tests on transformer insulating oil, it is possible to evaluate the health condition of the insulation system of an in-service power transformer. This paper develops an intelligent algorithm for automatically processing the data collected from oil tests and determining a health index for the transformer insulation system. This intelligent algorithm adopts a fuzzy support vector machine (FSVM) approach, which constructs a statistical model using a training database based on the historic data collected from 181 in-service power transformers. The procedure of constructing the training database, the formulation and implementation of FSVM and the data preprocessing methods for dealing with a class imbalanced training database is presented in this paper. Numerical experiments are also conducted to evaluate the performance of the algorithms developed in the paper.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TDEI.2013.6518966</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1070-9878
ispartof IEEE transactions on dielectrics and electrical insulation, 2013-06, Vol.20 (3), p.965-973
issn 1070-9878
1558-4135
language eng
recordid cdi_ieee_primary_6518966
source IEEE Xplore (Online service)
subjects Algorithms
Condition assessment of transformer
Electric power generation
Fuzzy
fuzzy support vector machine (FSVM)
Health
health index
Indexes
Insulation
insulation system
Oil insulation
oil test
power transformer
Power transformer insulation
support vector machine (SVM)
Support vector machines
Training
Transformers
title Application of fuzzy support vector machine for determining the health index of the insulation system of in-service power transformers
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T20%3A29%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Application%20of%20fuzzy%20support%20vector%20machine%20for%20determining%20the%20health%20index%20of%20the%20insulation%20system%20of%20in-service%20power%20transformers&rft.jtitle=IEEE%20transactions%20on%20dielectrics%20and%20electrical%20insulation&rft.au=Ashkezari,%20A.%20D.&rft.date=2013-06-01&rft.volume=20&rft.issue=3&rft.spage=965&rft.epage=973&rft.pages=965-973&rft.issn=1070-9878&rft.eissn=1558-4135&rft.coden=ITDIES&rft_id=info:doi/10.1109/TDEI.2013.6518966&rft_dat=%3Cproquest_ieee_%3E2989212271%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c417t-eaf22d4a1f824c2aabd38f0745f99c3d43f9555ac84dcd5cb52a8894032ac5073%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1365221540&rft_id=info:pmid/&rft_ieee_id=6518966&rfr_iscdi=true