Loading…
Application of fuzzy support vector machine for determining the health index of the insulation system of in-service power transformers
With the integration of data and information obtained from a variety of chemical and electrical tests on transformer insulating oil, it is possible to evaluate the health condition of the insulation system of an in-service power transformer. This paper develops an intelligent algorithm for automatic...
Saved in:
Published in: | IEEE transactions on dielectrics and electrical insulation 2013-06, Vol.20 (3), p.965-973 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c417t-eaf22d4a1f824c2aabd38f0745f99c3d43f9555ac84dcd5cb52a8894032ac5073 |
---|---|
cites | cdi_FETCH-LOGICAL-c417t-eaf22d4a1f824c2aabd38f0745f99c3d43f9555ac84dcd5cb52a8894032ac5073 |
container_end_page | 973 |
container_issue | 3 |
container_start_page | 965 |
container_title | IEEE transactions on dielectrics and electrical insulation |
container_volume | 20 |
creator | Ashkezari, A. D. Hui Ma Saha, T. K. Ekanayake, C. |
description | With the integration of data and information obtained from a variety of chemical and electrical tests on transformer insulating oil, it is possible to evaluate the health condition of the insulation system of an in-service power transformer. This paper develops an intelligent algorithm for automatically processing the data collected from oil tests and determining a health index for the transformer insulation system. This intelligent algorithm adopts a fuzzy support vector machine (FSVM) approach, which constructs a statistical model using a training database based on the historic data collected from 181 in-service power transformers. The procedure of constructing the training database, the formulation and implementation of FSVM and the data preprocessing methods for dealing with a class imbalanced training database is presented in this paper. Numerical experiments are also conducted to evaluate the performance of the algorithms developed in the paper. |
doi_str_mv | 10.1109/TDEI.2013.6518966 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_6518966</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6518966</ieee_id><sourcerecordid>2989212271</sourcerecordid><originalsourceid>FETCH-LOGICAL-c417t-eaf22d4a1f824c2aabd38f0745f99c3d43f9555ac84dcd5cb52a8894032ac5073</originalsourceid><addsrcrecordid>eNpdkbtO7DAQhi0EErDwAIjGEs1psviaOCXiLBcJiQbqyDhj1iixg-1wWB6A5ybRwimoZjTzzaeRfoROKFlSSurzh7-r2yUjlC9LSVVdljvogEqpCkG53J16UpGiVpXaR4cpvRBChWTlAfq8GIbOGZ1d8DhYbMePjw1O4zCEmPEbmBwi7rVZOw_YTn0LGWLvvPPPOK8Br0F3eY2db-F9Fswz59PYbZVpkzL088L5IkF8cwbwEP5BxDlqnyZlDzEdoT2ruwTH33WBHq9WD5c3xd399e3lxV1hBK1yAdoy1gpNrWLCMK2fWq4sqYS0dW14K7itpZTaKNGaVponybRStSCcaSNJxRfoz9Y7xPA6QspN75KBrtMewpgayitWSsEpm9CzX-hLGKOfvpuoUjJG5eRdILqlTAwpRbDNEF2v46ahpJmTaeZkmjmZ5juZ6eZ0e-MA4D__s_0Co_aM9Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1365221540</pqid></control><display><type>article</type><title>Application of fuzzy support vector machine for determining the health index of the insulation system of in-service power transformers</title><source>IEEE Xplore (Online service)</source><creator>Ashkezari, A. D. ; Hui Ma ; Saha, T. K. ; Ekanayake, C.</creator><creatorcontrib>Ashkezari, A. D. ; Hui Ma ; Saha, T. K. ; Ekanayake, C.</creatorcontrib><description>With the integration of data and information obtained from a variety of chemical and electrical tests on transformer insulating oil, it is possible to evaluate the health condition of the insulation system of an in-service power transformer. This paper develops an intelligent algorithm for automatically processing the data collected from oil tests and determining a health index for the transformer insulation system. This intelligent algorithm adopts a fuzzy support vector machine (FSVM) approach, which constructs a statistical model using a training database based on the historic data collected from 181 in-service power transformers. The procedure of constructing the training database, the formulation and implementation of FSVM and the data preprocessing methods for dealing with a class imbalanced training database is presented in this paper. Numerical experiments are also conducted to evaluate the performance of the algorithms developed in the paper.</description><identifier>ISSN: 1070-9878</identifier><identifier>EISSN: 1558-4135</identifier><identifier>DOI: 10.1109/TDEI.2013.6518966</identifier><identifier>CODEN: ITDIES</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Condition assessment of transformer ; Electric power generation ; Fuzzy ; fuzzy support vector machine (FSVM) ; Health ; health index ; Indexes ; Insulation ; insulation system ; Oil insulation ; oil test ; power transformer ; Power transformer insulation ; support vector machine (SVM) ; Support vector machines ; Training ; Transformers</subject><ispartof>IEEE transactions on dielectrics and electrical insulation, 2013-06, Vol.20 (3), p.965-973</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jun 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c417t-eaf22d4a1f824c2aabd38f0745f99c3d43f9555ac84dcd5cb52a8894032ac5073</citedby><cites>FETCH-LOGICAL-c417t-eaf22d4a1f824c2aabd38f0745f99c3d43f9555ac84dcd5cb52a8894032ac5073</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6518966$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Ashkezari, A. D.</creatorcontrib><creatorcontrib>Hui Ma</creatorcontrib><creatorcontrib>Saha, T. K.</creatorcontrib><creatorcontrib>Ekanayake, C.</creatorcontrib><title>Application of fuzzy support vector machine for determining the health index of the insulation system of in-service power transformers</title><title>IEEE transactions on dielectrics and electrical insulation</title><addtitle>T-DEI</addtitle><description>With the integration of data and information obtained from a variety of chemical and electrical tests on transformer insulating oil, it is possible to evaluate the health condition of the insulation system of an in-service power transformer. This paper develops an intelligent algorithm for automatically processing the data collected from oil tests and determining a health index for the transformer insulation system. This intelligent algorithm adopts a fuzzy support vector machine (FSVM) approach, which constructs a statistical model using a training database based on the historic data collected from 181 in-service power transformers. The procedure of constructing the training database, the formulation and implementation of FSVM and the data preprocessing methods for dealing with a class imbalanced training database is presented in this paper. Numerical experiments are also conducted to evaluate the performance of the algorithms developed in the paper.</description><subject>Algorithms</subject><subject>Condition assessment of transformer</subject><subject>Electric power generation</subject><subject>Fuzzy</subject><subject>fuzzy support vector machine (FSVM)</subject><subject>Health</subject><subject>health index</subject><subject>Indexes</subject><subject>Insulation</subject><subject>insulation system</subject><subject>Oil insulation</subject><subject>oil test</subject><subject>power transformer</subject><subject>Power transformer insulation</subject><subject>support vector machine (SVM)</subject><subject>Support vector machines</subject><subject>Training</subject><subject>Transformers</subject><issn>1070-9878</issn><issn>1558-4135</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNpdkbtO7DAQhi0EErDwAIjGEs1psviaOCXiLBcJiQbqyDhj1iixg-1wWB6A5ybRwimoZjTzzaeRfoROKFlSSurzh7-r2yUjlC9LSVVdljvogEqpCkG53J16UpGiVpXaR4cpvRBChWTlAfq8GIbOGZ1d8DhYbMePjw1O4zCEmPEbmBwi7rVZOw_YTn0LGWLvvPPPOK8Br0F3eY2db-F9Fswz59PYbZVpkzL088L5IkF8cwbwEP5BxDlqnyZlDzEdoT2ruwTH33WBHq9WD5c3xd399e3lxV1hBK1yAdoy1gpNrWLCMK2fWq4sqYS0dW14K7itpZTaKNGaVponybRStSCcaSNJxRfoz9Y7xPA6QspN75KBrtMewpgayitWSsEpm9CzX-hLGKOfvpuoUjJG5eRdILqlTAwpRbDNEF2v46ahpJmTaeZkmjmZ5juZ6eZ0e-MA4D__s_0Co_aM9Q</recordid><startdate>20130601</startdate><enddate>20130601</enddate><creator>Ashkezari, A. D.</creator><creator>Hui Ma</creator><creator>Saha, T. K.</creator><creator>Ekanayake, C.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20130601</creationdate><title>Application of fuzzy support vector machine for determining the health index of the insulation system of in-service power transformers</title><author>Ashkezari, A. D. ; Hui Ma ; Saha, T. K. ; Ekanayake, C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c417t-eaf22d4a1f824c2aabd38f0745f99c3d43f9555ac84dcd5cb52a8894032ac5073</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Algorithms</topic><topic>Condition assessment of transformer</topic><topic>Electric power generation</topic><topic>Fuzzy</topic><topic>fuzzy support vector machine (FSVM)</topic><topic>Health</topic><topic>health index</topic><topic>Indexes</topic><topic>Insulation</topic><topic>insulation system</topic><topic>Oil insulation</topic><topic>oil test</topic><topic>power transformer</topic><topic>Power transformer insulation</topic><topic>support vector machine (SVM)</topic><topic>Support vector machines</topic><topic>Training</topic><topic>Transformers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ashkezari, A. D.</creatorcontrib><creatorcontrib>Hui Ma</creatorcontrib><creatorcontrib>Saha, T. K.</creatorcontrib><creatorcontrib>Ekanayake, C.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Electronic Library Online</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on dielectrics and electrical insulation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ashkezari, A. D.</au><au>Hui Ma</au><au>Saha, T. K.</au><au>Ekanayake, C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Application of fuzzy support vector machine for determining the health index of the insulation system of in-service power transformers</atitle><jtitle>IEEE transactions on dielectrics and electrical insulation</jtitle><stitle>T-DEI</stitle><date>2013-06-01</date><risdate>2013</risdate><volume>20</volume><issue>3</issue><spage>965</spage><epage>973</epage><pages>965-973</pages><issn>1070-9878</issn><eissn>1558-4135</eissn><coden>ITDIES</coden><abstract>With the integration of data and information obtained from a variety of chemical and electrical tests on transformer insulating oil, it is possible to evaluate the health condition of the insulation system of an in-service power transformer. This paper develops an intelligent algorithm for automatically processing the data collected from oil tests and determining a health index for the transformer insulation system. This intelligent algorithm adopts a fuzzy support vector machine (FSVM) approach, which constructs a statistical model using a training database based on the historic data collected from 181 in-service power transformers. The procedure of constructing the training database, the formulation and implementation of FSVM and the data preprocessing methods for dealing with a class imbalanced training database is presented in this paper. Numerical experiments are also conducted to evaluate the performance of the algorithms developed in the paper.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TDEI.2013.6518966</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1070-9878 |
ispartof | IEEE transactions on dielectrics and electrical insulation, 2013-06, Vol.20 (3), p.965-973 |
issn | 1070-9878 1558-4135 |
language | eng |
recordid | cdi_ieee_primary_6518966 |
source | IEEE Xplore (Online service) |
subjects | Algorithms Condition assessment of transformer Electric power generation Fuzzy fuzzy support vector machine (FSVM) Health health index Indexes Insulation insulation system Oil insulation oil test power transformer Power transformer insulation support vector machine (SVM) Support vector machines Training Transformers |
title | Application of fuzzy support vector machine for determining the health index of the insulation system of in-service power transformers |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T20%3A29%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Application%20of%20fuzzy%20support%20vector%20machine%20for%20determining%20the%20health%20index%20of%20the%20insulation%20system%20of%20in-service%20power%20transformers&rft.jtitle=IEEE%20transactions%20on%20dielectrics%20and%20electrical%20insulation&rft.au=Ashkezari,%20A.%20D.&rft.date=2013-06-01&rft.volume=20&rft.issue=3&rft.spage=965&rft.epage=973&rft.pages=965-973&rft.issn=1070-9878&rft.eissn=1558-4135&rft.coden=ITDIES&rft_id=info:doi/10.1109/TDEI.2013.6518966&rft_dat=%3Cproquest_ieee_%3E2989212271%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c417t-eaf22d4a1f824c2aabd38f0745f99c3d43f9555ac84dcd5cb52a8894032ac5073%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1365221540&rft_id=info:pmid/&rft_ieee_id=6518966&rfr_iscdi=true |