Loading…

Feature-based approach to fuse fMRI and DTI in epilepsy using joint independent component analysis

Functional magnetic resonance imaging (fMRI) and structural MRI (sMRI) provide complementary information. Signal processing and statistical models may be used to fuse neuroimaging data across different imaging modalities. In this paper, we present a data driven method for fusing resting state fMRI a...

Full description

Saved in:
Bibliographic Details
Main Authors: Riazi, A. H., Soltanian-Zadeh, H., Hossein-Zadeh, G.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 212
container_issue
container_start_page 209
container_title
container_volume
creator Riazi, A. H.
Soltanian-Zadeh, H.
Hossein-Zadeh, G.
description Functional magnetic resonance imaging (fMRI) and structural MRI (sMRI) provide complementary information. Signal processing and statistical models may be used to fuse neuroimaging data across different imaging modalities. In this paper, we present a data driven method for fusing resting state fMRI and diffusion tensor imaging (DTI) data at feature level. The features are amplitude of low frequency fluctuations (ALFF) and fractional anisotropy (FA) extracted from fMRI and DTI datasets of epilepsy and healthy controls, respectively. We discuss main issues associated with group independent component analysis (ICA) as a fusion method. We address our proposed approach for combining two modalities across subjects and back reconstruction of independent components for each group and each subject. Our results indicate that connectivity of regions in default mode network depends on integrity of white matter that connects the two hemispheres (corpus callosum). The proposed signal processing and statistical methods facilitate evaluation of brain connectivity using different modalities. Separate analysis of data modalities does not reveal results of joint analysis.
doi_str_mv 10.1109/ICBME.2012.6519682
format conference_proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6519682</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6519682</ieee_id><sourcerecordid>6519682</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-12f1a1ad063ed0ee2a905048a444e1dfdbcc15ae1dc7869209ec89bb5d598b3e3</originalsourceid><addsrcrecordid>eNpFkM1OwzAQhI0QElD6AnDxC6TsOn_2EUoLkVohodyrTbwBV21ixcmhb09QK3GZ-Wak3cMI8YiwQATzXCxft6uFAlSLLEWTaXUl7jHJ8jhGZdLr_6DzWzEPYQ8A02WGoO9EtWYaxp6jigJbSd73HdU_cuhkMwaWzfarkNRa-VYW0rWSvTuwDyc5Btd-y33n2mHqLXueZOK6O_qu_SNq6XAKLjyIm4YOgecXn4lyvSqXH9Hm871YvmwiZ2CIUDVISBaymC0wKzKQQqIpSRJG29iqrjGlCetcZ0aB4VqbqkptanQVczwTT-e3jpl3vndH6k-7yyTxLynhVqc</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Feature-based approach to fuse fMRI and DTI in epilepsy using joint independent component analysis</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Riazi, A. H. ; Soltanian-Zadeh, H. ; Hossein-Zadeh, G.</creator><creatorcontrib>Riazi, A. H. ; Soltanian-Zadeh, H. ; Hossein-Zadeh, G.</creatorcontrib><description>Functional magnetic resonance imaging (fMRI) and structural MRI (sMRI) provide complementary information. Signal processing and statistical models may be used to fuse neuroimaging data across different imaging modalities. In this paper, we present a data driven method for fusing resting state fMRI and diffusion tensor imaging (DTI) data at feature level. The features are amplitude of low frequency fluctuations (ALFF) and fractional anisotropy (FA) extracted from fMRI and DTI datasets of epilepsy and healthy controls, respectively. We discuss main issues associated with group independent component analysis (ICA) as a fusion method. We address our proposed approach for combining two modalities across subjects and back reconstruction of independent components for each group and each subject. Our results indicate that connectivity of regions in default mode network depends on integrity of white matter that connects the two hemispheres (corpus callosum). The proposed signal processing and statistical methods facilitate evaluation of brain connectivity using different modalities. Separate analysis of data modalities does not reveal results of joint analysis.</description><identifier>ISBN: 1467331287</identifier><identifier>ISBN: 9781467331289</identifier><identifier>EISBN: 1467331295</identifier><identifier>EISBN: 9781467331296</identifier><identifier>EISBN: 9781467331302</identifier><identifier>EISBN: 1467331309</identifier><identifier>DOI: 10.1109/ICBME.2012.6519682</identifier><language>eng</language><publisher>IEEE</publisher><subject>DTI ; fMRI ; Group Analysis ; Joint ICA</subject><ispartof>2012 19th Iranian Conference of Biomedical Engineering (ICBME), 2012, p.209-212</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6519682$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6519682$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Riazi, A. H.</creatorcontrib><creatorcontrib>Soltanian-Zadeh, H.</creatorcontrib><creatorcontrib>Hossein-Zadeh, G.</creatorcontrib><title>Feature-based approach to fuse fMRI and DTI in epilepsy using joint independent component analysis</title><title>2012 19th Iranian Conference of Biomedical Engineering (ICBME)</title><addtitle>ICBME</addtitle><description>Functional magnetic resonance imaging (fMRI) and structural MRI (sMRI) provide complementary information. Signal processing and statistical models may be used to fuse neuroimaging data across different imaging modalities. In this paper, we present a data driven method for fusing resting state fMRI and diffusion tensor imaging (DTI) data at feature level. The features are amplitude of low frequency fluctuations (ALFF) and fractional anisotropy (FA) extracted from fMRI and DTI datasets of epilepsy and healthy controls, respectively. We discuss main issues associated with group independent component analysis (ICA) as a fusion method. We address our proposed approach for combining two modalities across subjects and back reconstruction of independent components for each group and each subject. Our results indicate that connectivity of regions in default mode network depends on integrity of white matter that connects the two hemispheres (corpus callosum). The proposed signal processing and statistical methods facilitate evaluation of brain connectivity using different modalities. Separate analysis of data modalities does not reveal results of joint analysis.</description><subject>DTI</subject><subject>fMRI</subject><subject>Group Analysis</subject><subject>Joint ICA</subject><isbn>1467331287</isbn><isbn>9781467331289</isbn><isbn>1467331295</isbn><isbn>9781467331296</isbn><isbn>9781467331302</isbn><isbn>1467331309</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNpFkM1OwzAQhI0QElD6AnDxC6TsOn_2EUoLkVohodyrTbwBV21ixcmhb09QK3GZ-Wak3cMI8YiwQATzXCxft6uFAlSLLEWTaXUl7jHJ8jhGZdLr_6DzWzEPYQ8A02WGoO9EtWYaxp6jigJbSd73HdU_cuhkMwaWzfarkNRa-VYW0rWSvTuwDyc5Btd-y33n2mHqLXueZOK6O_qu_SNq6XAKLjyIm4YOgecXn4lyvSqXH9Hm871YvmwiZ2CIUDVISBaymC0wKzKQQqIpSRJG29iqrjGlCetcZ0aB4VqbqkptanQVczwTT-e3jpl3vndH6k-7yyTxLynhVqc</recordid><startdate>201212</startdate><enddate>201212</enddate><creator>Riazi, A. H.</creator><creator>Soltanian-Zadeh, H.</creator><creator>Hossein-Zadeh, G.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201212</creationdate><title>Feature-based approach to fuse fMRI and DTI in epilepsy using joint independent component analysis</title><author>Riazi, A. H. ; Soltanian-Zadeh, H. ; Hossein-Zadeh, G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-12f1a1ad063ed0ee2a905048a444e1dfdbcc15ae1dc7869209ec89bb5d598b3e3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>DTI</topic><topic>fMRI</topic><topic>Group Analysis</topic><topic>Joint ICA</topic><toplevel>online_resources</toplevel><creatorcontrib>Riazi, A. H.</creatorcontrib><creatorcontrib>Soltanian-Zadeh, H.</creatorcontrib><creatorcontrib>Hossein-Zadeh, G.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Riazi, A. H.</au><au>Soltanian-Zadeh, H.</au><au>Hossein-Zadeh, G.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Feature-based approach to fuse fMRI and DTI in epilepsy using joint independent component analysis</atitle><btitle>2012 19th Iranian Conference of Biomedical Engineering (ICBME)</btitle><stitle>ICBME</stitle><date>2012-12</date><risdate>2012</risdate><spage>209</spage><epage>212</epage><pages>209-212</pages><isbn>1467331287</isbn><isbn>9781467331289</isbn><eisbn>1467331295</eisbn><eisbn>9781467331296</eisbn><eisbn>9781467331302</eisbn><eisbn>1467331309</eisbn><abstract>Functional magnetic resonance imaging (fMRI) and structural MRI (sMRI) provide complementary information. Signal processing and statistical models may be used to fuse neuroimaging data across different imaging modalities. In this paper, we present a data driven method for fusing resting state fMRI and diffusion tensor imaging (DTI) data at feature level. The features are amplitude of low frequency fluctuations (ALFF) and fractional anisotropy (FA) extracted from fMRI and DTI datasets of epilepsy and healthy controls, respectively. We discuss main issues associated with group independent component analysis (ICA) as a fusion method. We address our proposed approach for combining two modalities across subjects and back reconstruction of independent components for each group and each subject. Our results indicate that connectivity of regions in default mode network depends on integrity of white matter that connects the two hemispheres (corpus callosum). The proposed signal processing and statistical methods facilitate evaluation of brain connectivity using different modalities. Separate analysis of data modalities does not reveal results of joint analysis.</abstract><pub>IEEE</pub><doi>10.1109/ICBME.2012.6519682</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 1467331287
ispartof 2012 19th Iranian Conference of Biomedical Engineering (ICBME), 2012, p.209-212
issn
language eng
recordid cdi_ieee_primary_6519682
source IEEE Electronic Library (IEL) Conference Proceedings
subjects DTI
fMRI
Group Analysis
Joint ICA
title Feature-based approach to fuse fMRI and DTI in epilepsy using joint independent component analysis
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T15%3A31%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Feature-based%20approach%20to%20fuse%20fMRI%20and%20DTI%20in%20epilepsy%20using%20joint%20independent%20component%20analysis&rft.btitle=2012%2019th%20Iranian%20Conference%20of%20Biomedical%20Engineering%20(ICBME)&rft.au=Riazi,%20A.%20H.&rft.date=2012-12&rft.spage=209&rft.epage=212&rft.pages=209-212&rft.isbn=1467331287&rft.isbn_list=9781467331289&rft_id=info:doi/10.1109/ICBME.2012.6519682&rft.eisbn=1467331295&rft.eisbn_list=9781467331296&rft.eisbn_list=9781467331302&rft.eisbn_list=1467331309&rft_dat=%3Cieee_6IE%3E6519682%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i90t-12f1a1ad063ed0ee2a905048a444e1dfdbcc15ae1dc7869209ec89bb5d598b3e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6519682&rfr_iscdi=true