Loading…
Feature-based approach to fuse fMRI and DTI in epilepsy using joint independent component analysis
Functional magnetic resonance imaging (fMRI) and structural MRI (sMRI) provide complementary information. Signal processing and statistical models may be used to fuse neuroimaging data across different imaging modalities. In this paper, we present a data driven method for fusing resting state fMRI a...
Saved in:
Main Authors: | , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 212 |
container_issue | |
container_start_page | 209 |
container_title | |
container_volume | |
creator | Riazi, A. H. Soltanian-Zadeh, H. Hossein-Zadeh, G. |
description | Functional magnetic resonance imaging (fMRI) and structural MRI (sMRI) provide complementary information. Signal processing and statistical models may be used to fuse neuroimaging data across different imaging modalities. In this paper, we present a data driven method for fusing resting state fMRI and diffusion tensor imaging (DTI) data at feature level. The features are amplitude of low frequency fluctuations (ALFF) and fractional anisotropy (FA) extracted from fMRI and DTI datasets of epilepsy and healthy controls, respectively. We discuss main issues associated with group independent component analysis (ICA) as a fusion method. We address our proposed approach for combining two modalities across subjects and back reconstruction of independent components for each group and each subject. Our results indicate that connectivity of regions in default mode network depends on integrity of white matter that connects the two hemispheres (corpus callosum). The proposed signal processing and statistical methods facilitate evaluation of brain connectivity using different modalities. Separate analysis of data modalities does not reveal results of joint analysis. |
doi_str_mv | 10.1109/ICBME.2012.6519682 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6519682</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6519682</ieee_id><sourcerecordid>6519682</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-12f1a1ad063ed0ee2a905048a444e1dfdbcc15ae1dc7869209ec89bb5d598b3e3</originalsourceid><addsrcrecordid>eNpFkM1OwzAQhI0QElD6AnDxC6TsOn_2EUoLkVohodyrTbwBV21ixcmhb09QK3GZ-Wak3cMI8YiwQATzXCxft6uFAlSLLEWTaXUl7jHJ8jhGZdLr_6DzWzEPYQ8A02WGoO9EtWYaxp6jigJbSd73HdU_cuhkMwaWzfarkNRa-VYW0rWSvTuwDyc5Btd-y33n2mHqLXueZOK6O_qu_SNq6XAKLjyIm4YOgecXn4lyvSqXH9Hm871YvmwiZ2CIUDVISBaymC0wKzKQQqIpSRJG29iqrjGlCetcZ0aB4VqbqkptanQVczwTT-e3jpl3vndH6k-7yyTxLynhVqc</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Feature-based approach to fuse fMRI and DTI in epilepsy using joint independent component analysis</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Riazi, A. H. ; Soltanian-Zadeh, H. ; Hossein-Zadeh, G.</creator><creatorcontrib>Riazi, A. H. ; Soltanian-Zadeh, H. ; Hossein-Zadeh, G.</creatorcontrib><description>Functional magnetic resonance imaging (fMRI) and structural MRI (sMRI) provide complementary information. Signal processing and statistical models may be used to fuse neuroimaging data across different imaging modalities. In this paper, we present a data driven method for fusing resting state fMRI and diffusion tensor imaging (DTI) data at feature level. The features are amplitude of low frequency fluctuations (ALFF) and fractional anisotropy (FA) extracted from fMRI and DTI datasets of epilepsy and healthy controls, respectively. We discuss main issues associated with group independent component analysis (ICA) as a fusion method. We address our proposed approach for combining two modalities across subjects and back reconstruction of independent components for each group and each subject. Our results indicate that connectivity of regions in default mode network depends on integrity of white matter that connects the two hemispheres (corpus callosum). The proposed signal processing and statistical methods facilitate evaluation of brain connectivity using different modalities. Separate analysis of data modalities does not reveal results of joint analysis.</description><identifier>ISBN: 1467331287</identifier><identifier>ISBN: 9781467331289</identifier><identifier>EISBN: 1467331295</identifier><identifier>EISBN: 9781467331296</identifier><identifier>EISBN: 9781467331302</identifier><identifier>EISBN: 1467331309</identifier><identifier>DOI: 10.1109/ICBME.2012.6519682</identifier><language>eng</language><publisher>IEEE</publisher><subject>DTI ; fMRI ; Group Analysis ; Joint ICA</subject><ispartof>2012 19th Iranian Conference of Biomedical Engineering (ICBME), 2012, p.209-212</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6519682$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6519682$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Riazi, A. H.</creatorcontrib><creatorcontrib>Soltanian-Zadeh, H.</creatorcontrib><creatorcontrib>Hossein-Zadeh, G.</creatorcontrib><title>Feature-based approach to fuse fMRI and DTI in epilepsy using joint independent component analysis</title><title>2012 19th Iranian Conference of Biomedical Engineering (ICBME)</title><addtitle>ICBME</addtitle><description>Functional magnetic resonance imaging (fMRI) and structural MRI (sMRI) provide complementary information. Signal processing and statistical models may be used to fuse neuroimaging data across different imaging modalities. In this paper, we present a data driven method for fusing resting state fMRI and diffusion tensor imaging (DTI) data at feature level. The features are amplitude of low frequency fluctuations (ALFF) and fractional anisotropy (FA) extracted from fMRI and DTI datasets of epilepsy and healthy controls, respectively. We discuss main issues associated with group independent component analysis (ICA) as a fusion method. We address our proposed approach for combining two modalities across subjects and back reconstruction of independent components for each group and each subject. Our results indicate that connectivity of regions in default mode network depends on integrity of white matter that connects the two hemispheres (corpus callosum). The proposed signal processing and statistical methods facilitate evaluation of brain connectivity using different modalities. Separate analysis of data modalities does not reveal results of joint analysis.</description><subject>DTI</subject><subject>fMRI</subject><subject>Group Analysis</subject><subject>Joint ICA</subject><isbn>1467331287</isbn><isbn>9781467331289</isbn><isbn>1467331295</isbn><isbn>9781467331296</isbn><isbn>9781467331302</isbn><isbn>1467331309</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNpFkM1OwzAQhI0QElD6AnDxC6TsOn_2EUoLkVohodyrTbwBV21ixcmhb09QK3GZ-Wak3cMI8YiwQATzXCxft6uFAlSLLEWTaXUl7jHJ8jhGZdLr_6DzWzEPYQ8A02WGoO9EtWYaxp6jigJbSd73HdU_cuhkMwaWzfarkNRa-VYW0rWSvTuwDyc5Btd-y33n2mHqLXueZOK6O_qu_SNq6XAKLjyIm4YOgecXn4lyvSqXH9Hm871YvmwiZ2CIUDVISBaymC0wKzKQQqIpSRJG29iqrjGlCetcZ0aB4VqbqkptanQVczwTT-e3jpl3vndH6k-7yyTxLynhVqc</recordid><startdate>201212</startdate><enddate>201212</enddate><creator>Riazi, A. H.</creator><creator>Soltanian-Zadeh, H.</creator><creator>Hossein-Zadeh, G.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201212</creationdate><title>Feature-based approach to fuse fMRI and DTI in epilepsy using joint independent component analysis</title><author>Riazi, A. H. ; Soltanian-Zadeh, H. ; Hossein-Zadeh, G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-12f1a1ad063ed0ee2a905048a444e1dfdbcc15ae1dc7869209ec89bb5d598b3e3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>DTI</topic><topic>fMRI</topic><topic>Group Analysis</topic><topic>Joint ICA</topic><toplevel>online_resources</toplevel><creatorcontrib>Riazi, A. H.</creatorcontrib><creatorcontrib>Soltanian-Zadeh, H.</creatorcontrib><creatorcontrib>Hossein-Zadeh, G.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Riazi, A. H.</au><au>Soltanian-Zadeh, H.</au><au>Hossein-Zadeh, G.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Feature-based approach to fuse fMRI and DTI in epilepsy using joint independent component analysis</atitle><btitle>2012 19th Iranian Conference of Biomedical Engineering (ICBME)</btitle><stitle>ICBME</stitle><date>2012-12</date><risdate>2012</risdate><spage>209</spage><epage>212</epage><pages>209-212</pages><isbn>1467331287</isbn><isbn>9781467331289</isbn><eisbn>1467331295</eisbn><eisbn>9781467331296</eisbn><eisbn>9781467331302</eisbn><eisbn>1467331309</eisbn><abstract>Functional magnetic resonance imaging (fMRI) and structural MRI (sMRI) provide complementary information. Signal processing and statistical models may be used to fuse neuroimaging data across different imaging modalities. In this paper, we present a data driven method for fusing resting state fMRI and diffusion tensor imaging (DTI) data at feature level. The features are amplitude of low frequency fluctuations (ALFF) and fractional anisotropy (FA) extracted from fMRI and DTI datasets of epilepsy and healthy controls, respectively. We discuss main issues associated with group independent component analysis (ICA) as a fusion method. We address our proposed approach for combining two modalities across subjects and back reconstruction of independent components for each group and each subject. Our results indicate that connectivity of regions in default mode network depends on integrity of white matter that connects the two hemispheres (corpus callosum). The proposed signal processing and statistical methods facilitate evaluation of brain connectivity using different modalities. Separate analysis of data modalities does not reveal results of joint analysis.</abstract><pub>IEEE</pub><doi>10.1109/ICBME.2012.6519682</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 1467331287 |
ispartof | 2012 19th Iranian Conference of Biomedical Engineering (ICBME), 2012, p.209-212 |
issn | |
language | eng |
recordid | cdi_ieee_primary_6519682 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | DTI fMRI Group Analysis Joint ICA |
title | Feature-based approach to fuse fMRI and DTI in epilepsy using joint independent component analysis |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T15%3A31%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Feature-based%20approach%20to%20fuse%20fMRI%20and%20DTI%20in%20epilepsy%20using%20joint%20independent%20component%20analysis&rft.btitle=2012%2019th%20Iranian%20Conference%20of%20Biomedical%20Engineering%20(ICBME)&rft.au=Riazi,%20A.%20H.&rft.date=2012-12&rft.spage=209&rft.epage=212&rft.pages=209-212&rft.isbn=1467331287&rft.isbn_list=9781467331289&rft_id=info:doi/10.1109/ICBME.2012.6519682&rft.eisbn=1467331295&rft.eisbn_list=9781467331296&rft.eisbn_list=9781467331302&rft.eisbn_list=1467331309&rft_dat=%3Cieee_6IE%3E6519682%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i90t-12f1a1ad063ed0ee2a905048a444e1dfdbcc15ae1dc7869209ec89bb5d598b3e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6519682&rfr_iscdi=true |