Loading…

Tense Operators and Dynamic De Morgan Algebras

To every propositional logic satisfying double negation law is assigned a De Morgan poset ε. Using of axioms for an universal quantifier, we set up axioms for the so-called tense operators G and H on ε. The triple D = (ε; G, H) is called a (partial) dynamic De Morgan algebra. We solve the following...

Full description

Saved in:
Bibliographic Details
Main Authors: Chajda, I., Paseka, J.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 224
container_issue
container_start_page 219
container_title
container_volume
creator Chajda, I.
Paseka, J.
description To every propositional logic satisfying double negation law is assigned a De Morgan poset ε. Using of axioms for an universal quantifier, we set up axioms for the so-called tense operators G and H on ε. The triple D = (ε; G, H) is called a (partial) dynamic De Morgan algebra. We solve the following questions: first, if a time frame is given, how to construct tense operators G and H; second, if a dynamic De Morgan algebra is given, how to find a time frame such that its tense operators G and H can be reached by this construction.
doi_str_mv 10.1109/ISMVL.2013.56
format conference_proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6524667</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6524667</ieee_id><sourcerecordid>6524667</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-2db4a0a7f7e3f4a0f7a6e91cdf705a2d9eec1dc1e09d0886d8dd6498a2f5d8163</originalsourceid><addsrcrecordid>eNotj0trAjEURtMX1FqXXXWTPzDTm2Ryb7IU7UMYcVFbupM4uSNTdJTEjf--0nb1HThw4BPiQUGpFPin2fv8sy41KFNavBAjTw4Iva08IV2KgTbkCq01Xv06VSEZBCR3LQagvC1Qm69bcZfzN4AGTTAQ5ZL7zHJx4BSO-5Rl6KOcnvqw6xo5ZTnfp03o5Xi74XUK-V7ctGGbefS_Q_Hx8rycvBX14nU2GddFp8geCx3XVYBALbFpz9RSQPaqiS2BDTp65kbFRjH4CM5hdDFi5V3QrY1OoRmKx79ux8yrQ-p2IZ1WaHWF51M_I7lHLA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Tense Operators and Dynamic De Morgan Algebras</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Chajda, I. ; Paseka, J.</creator><creatorcontrib>Chajda, I. ; Paseka, J.</creatorcontrib><description>To every propositional logic satisfying double negation law is assigned a De Morgan poset ε. Using of axioms for an universal quantifier, we set up axioms for the so-called tense operators G and H on ε. The triple D = (ε; G, H) is called a (partial) dynamic De Morgan algebra. We solve the following questions: first, if a time frame is given, how to construct tense operators G and H; second, if a dynamic De Morgan algebra is given, how to find a time frame such that its tense operators G and H can be reached by this construction.</description><identifier>ISSN: 0195-623X</identifier><identifier>ISBN: 9781467360678</identifier><identifier>ISBN: 1467360678</identifier><identifier>EISSN: 2378-2226</identifier><identifier>EISBN: 9780769549767</identifier><identifier>EISBN: 0769549764</identifier><identifier>DOI: 10.1109/ISMVL.2013.56</identifier><identifier>CODEN: IEEPAD</identifier><language>eng</language><publisher>IEEE</publisher><subject>Algebra ; De Morgan lattice ; De Morgan poset ; dynamic De Morgan algebra ; Educational institutions ; Electronic mail ; Geometry ; Lattices ; Quantum mechanics ; tense operators</subject><ispartof>2013 IEEE 43rd International Symposium on Multiple-Valued Logic, 2013, p.219-224</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6524667$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,778,782,787,788,2054,27908,54538,54903,54915</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6524667$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Chajda, I.</creatorcontrib><creatorcontrib>Paseka, J.</creatorcontrib><title>Tense Operators and Dynamic De Morgan Algebras</title><title>2013 IEEE 43rd International Symposium on Multiple-Valued Logic</title><addtitle>ismvl</addtitle><description>To every propositional logic satisfying double negation law is assigned a De Morgan poset ε. Using of axioms for an universal quantifier, we set up axioms for the so-called tense operators G and H on ε. The triple D = (ε; G, H) is called a (partial) dynamic De Morgan algebra. We solve the following questions: first, if a time frame is given, how to construct tense operators G and H; second, if a dynamic De Morgan algebra is given, how to find a time frame such that its tense operators G and H can be reached by this construction.</description><subject>Algebra</subject><subject>De Morgan lattice</subject><subject>De Morgan poset</subject><subject>dynamic De Morgan algebra</subject><subject>Educational institutions</subject><subject>Electronic mail</subject><subject>Geometry</subject><subject>Lattices</subject><subject>Quantum mechanics</subject><subject>tense operators</subject><issn>0195-623X</issn><issn>2378-2226</issn><isbn>9781467360678</isbn><isbn>1467360678</isbn><isbn>9780769549767</isbn><isbn>0769549764</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2013</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotj0trAjEURtMX1FqXXXWTPzDTm2Ryb7IU7UMYcVFbupM4uSNTdJTEjf--0nb1HThw4BPiQUGpFPin2fv8sy41KFNavBAjTw4Iva08IV2KgTbkCq01Xv06VSEZBCR3LQagvC1Qm69bcZfzN4AGTTAQ5ZL7zHJx4BSO-5Rl6KOcnvqw6xo5ZTnfp03o5Xi74XUK-V7ctGGbefS_Q_Hx8rycvBX14nU2GddFp8geCx3XVYBALbFpz9RSQPaqiS2BDTp65kbFRjH4CM5hdDFi5V3QrY1OoRmKx79ux8yrQ-p2IZ1WaHWF51M_I7lHLA</recordid><startdate>201305</startdate><enddate>201305</enddate><creator>Chajda, I.</creator><creator>Paseka, J.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201305</creationdate><title>Tense Operators and Dynamic De Morgan Algebras</title><author>Chajda, I. ; Paseka, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-2db4a0a7f7e3f4a0f7a6e91cdf705a2d9eec1dc1e09d0886d8dd6498a2f5d8163</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Algebra</topic><topic>De Morgan lattice</topic><topic>De Morgan poset</topic><topic>dynamic De Morgan algebra</topic><topic>Educational institutions</topic><topic>Electronic mail</topic><topic>Geometry</topic><topic>Lattices</topic><topic>Quantum mechanics</topic><topic>tense operators</topic><toplevel>online_resources</toplevel><creatorcontrib>Chajda, I.</creatorcontrib><creatorcontrib>Paseka, J.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chajda, I.</au><au>Paseka, J.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Tense Operators and Dynamic De Morgan Algebras</atitle><btitle>2013 IEEE 43rd International Symposium on Multiple-Valued Logic</btitle><stitle>ismvl</stitle><date>2013-05</date><risdate>2013</risdate><spage>219</spage><epage>224</epage><pages>219-224</pages><issn>0195-623X</issn><eissn>2378-2226</eissn><isbn>9781467360678</isbn><isbn>1467360678</isbn><eisbn>9780769549767</eisbn><eisbn>0769549764</eisbn><coden>IEEPAD</coden><abstract>To every propositional logic satisfying double negation law is assigned a De Morgan poset ε. Using of axioms for an universal quantifier, we set up axioms for the so-called tense operators G and H on ε. The triple D = (ε; G, H) is called a (partial) dynamic De Morgan algebra. We solve the following questions: first, if a time frame is given, how to construct tense operators G and H; second, if a dynamic De Morgan algebra is given, how to find a time frame such that its tense operators G and H can be reached by this construction.</abstract><pub>IEEE</pub><doi>10.1109/ISMVL.2013.56</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0195-623X
ispartof 2013 IEEE 43rd International Symposium on Multiple-Valued Logic, 2013, p.219-224
issn 0195-623X
2378-2226
language eng
recordid cdi_ieee_primary_6524667
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Algebra
De Morgan lattice
De Morgan poset
dynamic De Morgan algebra
Educational institutions
Electronic mail
Geometry
Lattices
Quantum mechanics
tense operators
title Tense Operators and Dynamic De Morgan Algebras
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T03%3A11%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Tense%20Operators%20and%20Dynamic%20De%20Morgan%20Algebras&rft.btitle=2013%20IEEE%2043rd%20International%20Symposium%20on%20Multiple-Valued%20Logic&rft.au=Chajda,%20I.&rft.date=2013-05&rft.spage=219&rft.epage=224&rft.pages=219-224&rft.issn=0195-623X&rft.eissn=2378-2226&rft.isbn=9781467360678&rft.isbn_list=1467360678&rft.coden=IEEPAD&rft_id=info:doi/10.1109/ISMVL.2013.56&rft.eisbn=9780769549767&rft.eisbn_list=0769549764&rft_dat=%3Cieee_6IE%3E6524667%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-2db4a0a7f7e3f4a0f7a6e91cdf705a2d9eec1dc1e09d0886d8dd6498a2f5d8163%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6524667&rfr_iscdi=true