Loading…
Tense Operators and Dynamic De Morgan Algebras
To every propositional logic satisfying double negation law is assigned a De Morgan poset ε. Using of axioms for an universal quantifier, we set up axioms for the so-called tense operators G and H on ε. The triple D = (ε; G, H) is called a (partial) dynamic De Morgan algebra. We solve the following...
Saved in:
Main Authors: | , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 224 |
container_issue | |
container_start_page | 219 |
container_title | |
container_volume | |
creator | Chajda, I. Paseka, J. |
description | To every propositional logic satisfying double negation law is assigned a De Morgan poset ε. Using of axioms for an universal quantifier, we set up axioms for the so-called tense operators G and H on ε. The triple D = (ε; G, H) is called a (partial) dynamic De Morgan algebra. We solve the following questions: first, if a time frame is given, how to construct tense operators G and H; second, if a dynamic De Morgan algebra is given, how to find a time frame such that its tense operators G and H can be reached by this construction. |
doi_str_mv | 10.1109/ISMVL.2013.56 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6524667</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6524667</ieee_id><sourcerecordid>6524667</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-2db4a0a7f7e3f4a0f7a6e91cdf705a2d9eec1dc1e09d0886d8dd6498a2f5d8163</originalsourceid><addsrcrecordid>eNotj0trAjEURtMX1FqXXXWTPzDTm2Ryb7IU7UMYcVFbupM4uSNTdJTEjf--0nb1HThw4BPiQUGpFPin2fv8sy41KFNavBAjTw4Iva08IV2KgTbkCq01Xv06VSEZBCR3LQagvC1Qm69bcZfzN4AGTTAQ5ZL7zHJx4BSO-5Rl6KOcnvqw6xo5ZTnfp03o5Xi74XUK-V7ctGGbefS_Q_Hx8rycvBX14nU2GddFp8geCx3XVYBALbFpz9RSQPaqiS2BDTp65kbFRjH4CM5hdDFi5V3QrY1OoRmKx79ux8yrQ-p2IZ1WaHWF51M_I7lHLA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Tense Operators and Dynamic De Morgan Algebras</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Chajda, I. ; Paseka, J.</creator><creatorcontrib>Chajda, I. ; Paseka, J.</creatorcontrib><description>To every propositional logic satisfying double negation law is assigned a De Morgan poset ε. Using of axioms for an universal quantifier, we set up axioms for the so-called tense operators G and H on ε. The triple D = (ε; G, H) is called a (partial) dynamic De Morgan algebra. We solve the following questions: first, if a time frame is given, how to construct tense operators G and H; second, if a dynamic De Morgan algebra is given, how to find a time frame such that its tense operators G and H can be reached by this construction.</description><identifier>ISSN: 0195-623X</identifier><identifier>ISBN: 9781467360678</identifier><identifier>ISBN: 1467360678</identifier><identifier>EISSN: 2378-2226</identifier><identifier>EISBN: 9780769549767</identifier><identifier>EISBN: 0769549764</identifier><identifier>DOI: 10.1109/ISMVL.2013.56</identifier><identifier>CODEN: IEEPAD</identifier><language>eng</language><publisher>IEEE</publisher><subject>Algebra ; De Morgan lattice ; De Morgan poset ; dynamic De Morgan algebra ; Educational institutions ; Electronic mail ; Geometry ; Lattices ; Quantum mechanics ; tense operators</subject><ispartof>2013 IEEE 43rd International Symposium on Multiple-Valued Logic, 2013, p.219-224</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6524667$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,778,782,787,788,2054,27908,54538,54903,54915</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6524667$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Chajda, I.</creatorcontrib><creatorcontrib>Paseka, J.</creatorcontrib><title>Tense Operators and Dynamic De Morgan Algebras</title><title>2013 IEEE 43rd International Symposium on Multiple-Valued Logic</title><addtitle>ismvl</addtitle><description>To every propositional logic satisfying double negation law is assigned a De Morgan poset ε. Using of axioms for an universal quantifier, we set up axioms for the so-called tense operators G and H on ε. The triple D = (ε; G, H) is called a (partial) dynamic De Morgan algebra. We solve the following questions: first, if a time frame is given, how to construct tense operators G and H; second, if a dynamic De Morgan algebra is given, how to find a time frame such that its tense operators G and H can be reached by this construction.</description><subject>Algebra</subject><subject>De Morgan lattice</subject><subject>De Morgan poset</subject><subject>dynamic De Morgan algebra</subject><subject>Educational institutions</subject><subject>Electronic mail</subject><subject>Geometry</subject><subject>Lattices</subject><subject>Quantum mechanics</subject><subject>tense operators</subject><issn>0195-623X</issn><issn>2378-2226</issn><isbn>9781467360678</isbn><isbn>1467360678</isbn><isbn>9780769549767</isbn><isbn>0769549764</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2013</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotj0trAjEURtMX1FqXXXWTPzDTm2Ryb7IU7UMYcVFbupM4uSNTdJTEjf--0nb1HThw4BPiQUGpFPin2fv8sy41KFNavBAjTw4Iva08IV2KgTbkCq01Xv06VSEZBCR3LQagvC1Qm69bcZfzN4AGTTAQ5ZL7zHJx4BSO-5Rl6KOcnvqw6xo5ZTnfp03o5Xi74XUK-V7ctGGbefS_Q_Hx8rycvBX14nU2GddFp8geCx3XVYBALbFpz9RSQPaqiS2BDTp65kbFRjH4CM5hdDFi5V3QrY1OoRmKx79ux8yrQ-p2IZ1WaHWF51M_I7lHLA</recordid><startdate>201305</startdate><enddate>201305</enddate><creator>Chajda, I.</creator><creator>Paseka, J.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201305</creationdate><title>Tense Operators and Dynamic De Morgan Algebras</title><author>Chajda, I. ; Paseka, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-2db4a0a7f7e3f4a0f7a6e91cdf705a2d9eec1dc1e09d0886d8dd6498a2f5d8163</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Algebra</topic><topic>De Morgan lattice</topic><topic>De Morgan poset</topic><topic>dynamic De Morgan algebra</topic><topic>Educational institutions</topic><topic>Electronic mail</topic><topic>Geometry</topic><topic>Lattices</topic><topic>Quantum mechanics</topic><topic>tense operators</topic><toplevel>online_resources</toplevel><creatorcontrib>Chajda, I.</creatorcontrib><creatorcontrib>Paseka, J.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chajda, I.</au><au>Paseka, J.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Tense Operators and Dynamic De Morgan Algebras</atitle><btitle>2013 IEEE 43rd International Symposium on Multiple-Valued Logic</btitle><stitle>ismvl</stitle><date>2013-05</date><risdate>2013</risdate><spage>219</spage><epage>224</epage><pages>219-224</pages><issn>0195-623X</issn><eissn>2378-2226</eissn><isbn>9781467360678</isbn><isbn>1467360678</isbn><eisbn>9780769549767</eisbn><eisbn>0769549764</eisbn><coden>IEEPAD</coden><abstract>To every propositional logic satisfying double negation law is assigned a De Morgan poset ε. Using of axioms for an universal quantifier, we set up axioms for the so-called tense operators G and H on ε. The triple D = (ε; G, H) is called a (partial) dynamic De Morgan algebra. We solve the following questions: first, if a time frame is given, how to construct tense operators G and H; second, if a dynamic De Morgan algebra is given, how to find a time frame such that its tense operators G and H can be reached by this construction.</abstract><pub>IEEE</pub><doi>10.1109/ISMVL.2013.56</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0195-623X |
ispartof | 2013 IEEE 43rd International Symposium on Multiple-Valued Logic, 2013, p.219-224 |
issn | 0195-623X 2378-2226 |
language | eng |
recordid | cdi_ieee_primary_6524667 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Algebra De Morgan lattice De Morgan poset dynamic De Morgan algebra Educational institutions Electronic mail Geometry Lattices Quantum mechanics tense operators |
title | Tense Operators and Dynamic De Morgan Algebras |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T03%3A11%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Tense%20Operators%20and%20Dynamic%20De%20Morgan%20Algebras&rft.btitle=2013%20IEEE%2043rd%20International%20Symposium%20on%20Multiple-Valued%20Logic&rft.au=Chajda,%20I.&rft.date=2013-05&rft.spage=219&rft.epage=224&rft.pages=219-224&rft.issn=0195-623X&rft.eissn=2378-2226&rft.isbn=9781467360678&rft.isbn_list=1467360678&rft.coden=IEEPAD&rft_id=info:doi/10.1109/ISMVL.2013.56&rft.eisbn=9780769549767&rft.eisbn_list=0769549764&rft_dat=%3Cieee_6IE%3E6524667%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-2db4a0a7f7e3f4a0f7a6e91cdf705a2d9eec1dc1e09d0886d8dd6498a2f5d8163%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6524667&rfr_iscdi=true |