Loading…
Performance analysis of feature extraction and classification techniques in CBIR
Content Based Image Retrieval (CBIR) plays an important role in multimedia search engine optimization. The most useful feature extraction techniques are Principal Component Analysis (PCA), Linear discriminant analysis (LDA), Independent Component Analysis (ICA). These techniques are used to extract...
Saved in:
Main Authors: | , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 1214 |
container_issue | |
container_start_page | 1211 |
container_title | |
container_volume | |
creator | Jeyabharathi, D. Suruliandi, A. |
description | Content Based Image Retrieval (CBIR) plays an important role in multimedia search engine optimization. The most useful feature extraction techniques are Principal Component Analysis (PCA), Linear discriminant analysis (LDA), Independent Component Analysis (ICA). These techniques are used to extract the important features from a query image. Support Vector Machine (SVM) and Nearest Neighbour (NN) are two most renowned classification techniques. In this paper we analyse the performance of feature extraction techniques (PCA, LDA, and ICA) and classification techniques (SVM, NN) used in CBIR. The performance metrics are Recognition Rate, F-Score. Based on this performance evaluation models, it is observed that Principal Component Analysis with Support Vector Machine provide more recognition accuracy than others. |
doi_str_mv | 10.1109/ICCPCT.2013.6528965 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6528965</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6528965</ieee_id><sourcerecordid>6528965</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-5beebc4dff7c1c119f8da00d6ad9599c1f0e22d0f58718fd80ff32cbd46dbd363</originalsourceid><addsrcrecordid>eNpVkMtKxDAYhSMiKGOfYDZ5gdZcmqRZavFSGLDIuB7S5P8x0Gk16YDz9g46G1eHcz74FoeQNWcV58zedW3bt9tKMC4rrURjtboghTUNr7WRtRVCXP7rXF2TIuc4MKGNFkrLG9L3kHBOezd5oG5y4zHHTGekCG45JKDwvSTnlzhPJxyoH93JgNG732kB_zHFrwNkGifaPnRvt-QK3ZihOOeKvD89btuXcvP63LX3mzJyo5ZSDQCDrwOi8dxzbrEJjrGgXbDKWs-RgRCBoWoMbzA0DFEKP4RahyFILVdk_eeNALD7THHv0nF3_kH-AKupU14</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Performance analysis of feature extraction and classification techniques in CBIR</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Jeyabharathi, D. ; Suruliandi, A.</creator><creatorcontrib>Jeyabharathi, D. ; Suruliandi, A.</creatorcontrib><description>Content Based Image Retrieval (CBIR) plays an important role in multimedia search engine optimization. The most useful feature extraction techniques are Principal Component Analysis (PCA), Linear discriminant analysis (LDA), Independent Component Analysis (ICA). These techniques are used to extract the important features from a query image. Support Vector Machine (SVM) and Nearest Neighbour (NN) are two most renowned classification techniques. In this paper we analyse the performance of feature extraction techniques (PCA, LDA, and ICA) and classification techniques (SVM, NN) used in CBIR. The performance metrics are Recognition Rate, F-Score. Based on this performance evaluation models, it is observed that Principal Component Analysis with Support Vector Machine provide more recognition accuracy than others.</description><identifier>ISBN: 9781467349215</identifier><identifier>ISBN: 1467349216</identifier><identifier>EISBN: 9781467349222</identifier><identifier>EISBN: 9781467349208</identifier><identifier>EISBN: 1467349224</identifier><identifier>EISBN: 1467349208</identifier><identifier>DOI: 10.1109/ICCPCT.2013.6528965</identifier><language>eng</language><publisher>IEEE</publisher><subject>Artificial neural networks ; CBIR ; ICA ; Image recognition ; LDA ; Marine vehicles ; PCA ; Principal component analysis ; Search engines ; Support vector machines ; SVM ; Training</subject><ispartof>2013 International Conference on Circuits, Power and Computing Technologies (ICCPCT), 2013, p.1211-1214</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6528965$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6528965$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Jeyabharathi, D.</creatorcontrib><creatorcontrib>Suruliandi, A.</creatorcontrib><title>Performance analysis of feature extraction and classification techniques in CBIR</title><title>2013 International Conference on Circuits, Power and Computing Technologies (ICCPCT)</title><addtitle>ICCPCT</addtitle><description>Content Based Image Retrieval (CBIR) plays an important role in multimedia search engine optimization. The most useful feature extraction techniques are Principal Component Analysis (PCA), Linear discriminant analysis (LDA), Independent Component Analysis (ICA). These techniques are used to extract the important features from a query image. Support Vector Machine (SVM) and Nearest Neighbour (NN) are two most renowned classification techniques. In this paper we analyse the performance of feature extraction techniques (PCA, LDA, and ICA) and classification techniques (SVM, NN) used in CBIR. The performance metrics are Recognition Rate, F-Score. Based on this performance evaluation models, it is observed that Principal Component Analysis with Support Vector Machine provide more recognition accuracy than others.</description><subject>Artificial neural networks</subject><subject>CBIR</subject><subject>ICA</subject><subject>Image recognition</subject><subject>LDA</subject><subject>Marine vehicles</subject><subject>PCA</subject><subject>Principal component analysis</subject><subject>Search engines</subject><subject>Support vector machines</subject><subject>SVM</subject><subject>Training</subject><isbn>9781467349215</isbn><isbn>1467349216</isbn><isbn>9781467349222</isbn><isbn>9781467349208</isbn><isbn>1467349224</isbn><isbn>1467349208</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2013</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNpVkMtKxDAYhSMiKGOfYDZ5gdZcmqRZavFSGLDIuB7S5P8x0Gk16YDz9g46G1eHcz74FoeQNWcV58zedW3bt9tKMC4rrURjtboghTUNr7WRtRVCXP7rXF2TIuc4MKGNFkrLG9L3kHBOezd5oG5y4zHHTGekCG45JKDwvSTnlzhPJxyoH93JgNG732kB_zHFrwNkGifaPnRvt-QK3ZihOOeKvD89btuXcvP63LX3mzJyo5ZSDQCDrwOi8dxzbrEJjrGgXbDKWs-RgRCBoWoMbzA0DFEKP4RahyFILVdk_eeNALD7THHv0nF3_kH-AKupU14</recordid><startdate>201303</startdate><enddate>201303</enddate><creator>Jeyabharathi, D.</creator><creator>Suruliandi, A.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201303</creationdate><title>Performance analysis of feature extraction and classification techniques in CBIR</title><author>Jeyabharathi, D. ; Suruliandi, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-5beebc4dff7c1c119f8da00d6ad9599c1f0e22d0f58718fd80ff32cbd46dbd363</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Artificial neural networks</topic><topic>CBIR</topic><topic>ICA</topic><topic>Image recognition</topic><topic>LDA</topic><topic>Marine vehicles</topic><topic>PCA</topic><topic>Principal component analysis</topic><topic>Search engines</topic><topic>Support vector machines</topic><topic>SVM</topic><topic>Training</topic><toplevel>online_resources</toplevel><creatorcontrib>Jeyabharathi, D.</creatorcontrib><creatorcontrib>Suruliandi, A.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Jeyabharathi, D.</au><au>Suruliandi, A.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Performance analysis of feature extraction and classification techniques in CBIR</atitle><btitle>2013 International Conference on Circuits, Power and Computing Technologies (ICCPCT)</btitle><stitle>ICCPCT</stitle><date>2013-03</date><risdate>2013</risdate><spage>1211</spage><epage>1214</epage><pages>1211-1214</pages><isbn>9781467349215</isbn><isbn>1467349216</isbn><eisbn>9781467349222</eisbn><eisbn>9781467349208</eisbn><eisbn>1467349224</eisbn><eisbn>1467349208</eisbn><abstract>Content Based Image Retrieval (CBIR) plays an important role in multimedia search engine optimization. The most useful feature extraction techniques are Principal Component Analysis (PCA), Linear discriminant analysis (LDA), Independent Component Analysis (ICA). These techniques are used to extract the important features from a query image. Support Vector Machine (SVM) and Nearest Neighbour (NN) are two most renowned classification techniques. In this paper we analyse the performance of feature extraction techniques (PCA, LDA, and ICA) and classification techniques (SVM, NN) used in CBIR. The performance metrics are Recognition Rate, F-Score. Based on this performance evaluation models, it is observed that Principal Component Analysis with Support Vector Machine provide more recognition accuracy than others.</abstract><pub>IEEE</pub><doi>10.1109/ICCPCT.2013.6528965</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 9781467349215 |
ispartof | 2013 International Conference on Circuits, Power and Computing Technologies (ICCPCT), 2013, p.1211-1214 |
issn | |
language | eng |
recordid | cdi_ieee_primary_6528965 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Artificial neural networks CBIR ICA Image recognition LDA Marine vehicles PCA Principal component analysis Search engines Support vector machines SVM Training |
title | Performance analysis of feature extraction and classification techniques in CBIR |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T14%3A48%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Performance%20analysis%20of%20feature%20extraction%20and%20classification%20techniques%20in%20CBIR&rft.btitle=2013%20International%20Conference%20on%20Circuits,%20Power%20and%20Computing%20Technologies%20(ICCPCT)&rft.au=Jeyabharathi,%20D.&rft.date=2013-03&rft.spage=1211&rft.epage=1214&rft.pages=1211-1214&rft.isbn=9781467349215&rft.isbn_list=1467349216&rft_id=info:doi/10.1109/ICCPCT.2013.6528965&rft.eisbn=9781467349222&rft.eisbn_list=9781467349208&rft.eisbn_list=1467349224&rft.eisbn_list=1467349208&rft_dat=%3Cieee_6IE%3E6528965%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-5beebc4dff7c1c119f8da00d6ad9599c1f0e22d0f58718fd80ff32cbd46dbd363%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6528965&rfr_iscdi=true |