Loading…

Performance analysis of feature extraction and classification techniques in CBIR

Content Based Image Retrieval (CBIR) plays an important role in multimedia search engine optimization. The most useful feature extraction techniques are Principal Component Analysis (PCA), Linear discriminant analysis (LDA), Independent Component Analysis (ICA). These techniques are used to extract...

Full description

Saved in:
Bibliographic Details
Main Authors: Jeyabharathi, D., Suruliandi, A.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 1214
container_issue
container_start_page 1211
container_title
container_volume
creator Jeyabharathi, D.
Suruliandi, A.
description Content Based Image Retrieval (CBIR) plays an important role in multimedia search engine optimization. The most useful feature extraction techniques are Principal Component Analysis (PCA), Linear discriminant analysis (LDA), Independent Component Analysis (ICA). These techniques are used to extract the important features from a query image. Support Vector Machine (SVM) and Nearest Neighbour (NN) are two most renowned classification techniques. In this paper we analyse the performance of feature extraction techniques (PCA, LDA, and ICA) and classification techniques (SVM, NN) used in CBIR. The performance metrics are Recognition Rate, F-Score. Based on this performance evaluation models, it is observed that Principal Component Analysis with Support Vector Machine provide more recognition accuracy than others.
doi_str_mv 10.1109/ICCPCT.2013.6528965
format conference_proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6528965</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6528965</ieee_id><sourcerecordid>6528965</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-5beebc4dff7c1c119f8da00d6ad9599c1f0e22d0f58718fd80ff32cbd46dbd363</originalsourceid><addsrcrecordid>eNpVkMtKxDAYhSMiKGOfYDZ5gdZcmqRZavFSGLDIuB7S5P8x0Gk16YDz9g46G1eHcz74FoeQNWcV58zedW3bt9tKMC4rrURjtboghTUNr7WRtRVCXP7rXF2TIuc4MKGNFkrLG9L3kHBOezd5oG5y4zHHTGekCG45JKDwvSTnlzhPJxyoH93JgNG732kB_zHFrwNkGifaPnRvt-QK3ZihOOeKvD89btuXcvP63LX3mzJyo5ZSDQCDrwOi8dxzbrEJjrGgXbDKWs-RgRCBoWoMbzA0DFEKP4RahyFILVdk_eeNALD7THHv0nF3_kH-AKupU14</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Performance analysis of feature extraction and classification techniques in CBIR</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Jeyabharathi, D. ; Suruliandi, A.</creator><creatorcontrib>Jeyabharathi, D. ; Suruliandi, A.</creatorcontrib><description>Content Based Image Retrieval (CBIR) plays an important role in multimedia search engine optimization. The most useful feature extraction techniques are Principal Component Analysis (PCA), Linear discriminant analysis (LDA), Independent Component Analysis (ICA). These techniques are used to extract the important features from a query image. Support Vector Machine (SVM) and Nearest Neighbour (NN) are two most renowned classification techniques. In this paper we analyse the performance of feature extraction techniques (PCA, LDA, and ICA) and classification techniques (SVM, NN) used in CBIR. The performance metrics are Recognition Rate, F-Score. Based on this performance evaluation models, it is observed that Principal Component Analysis with Support Vector Machine provide more recognition accuracy than others.</description><identifier>ISBN: 9781467349215</identifier><identifier>ISBN: 1467349216</identifier><identifier>EISBN: 9781467349222</identifier><identifier>EISBN: 9781467349208</identifier><identifier>EISBN: 1467349224</identifier><identifier>EISBN: 1467349208</identifier><identifier>DOI: 10.1109/ICCPCT.2013.6528965</identifier><language>eng</language><publisher>IEEE</publisher><subject>Artificial neural networks ; CBIR ; ICA ; Image recognition ; LDA ; Marine vehicles ; PCA ; Principal component analysis ; Search engines ; Support vector machines ; SVM ; Training</subject><ispartof>2013 International Conference on Circuits, Power and Computing Technologies (ICCPCT), 2013, p.1211-1214</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6528965$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6528965$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Jeyabharathi, D.</creatorcontrib><creatorcontrib>Suruliandi, A.</creatorcontrib><title>Performance analysis of feature extraction and classification techniques in CBIR</title><title>2013 International Conference on Circuits, Power and Computing Technologies (ICCPCT)</title><addtitle>ICCPCT</addtitle><description>Content Based Image Retrieval (CBIR) plays an important role in multimedia search engine optimization. The most useful feature extraction techniques are Principal Component Analysis (PCA), Linear discriminant analysis (LDA), Independent Component Analysis (ICA). These techniques are used to extract the important features from a query image. Support Vector Machine (SVM) and Nearest Neighbour (NN) are two most renowned classification techniques. In this paper we analyse the performance of feature extraction techniques (PCA, LDA, and ICA) and classification techniques (SVM, NN) used in CBIR. The performance metrics are Recognition Rate, F-Score. Based on this performance evaluation models, it is observed that Principal Component Analysis with Support Vector Machine provide more recognition accuracy than others.</description><subject>Artificial neural networks</subject><subject>CBIR</subject><subject>ICA</subject><subject>Image recognition</subject><subject>LDA</subject><subject>Marine vehicles</subject><subject>PCA</subject><subject>Principal component analysis</subject><subject>Search engines</subject><subject>Support vector machines</subject><subject>SVM</subject><subject>Training</subject><isbn>9781467349215</isbn><isbn>1467349216</isbn><isbn>9781467349222</isbn><isbn>9781467349208</isbn><isbn>1467349224</isbn><isbn>1467349208</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2013</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNpVkMtKxDAYhSMiKGOfYDZ5gdZcmqRZavFSGLDIuB7S5P8x0Gk16YDz9g46G1eHcz74FoeQNWcV58zedW3bt9tKMC4rrURjtboghTUNr7WRtRVCXP7rXF2TIuc4MKGNFkrLG9L3kHBOezd5oG5y4zHHTGekCG45JKDwvSTnlzhPJxyoH93JgNG732kB_zHFrwNkGifaPnRvt-QK3ZihOOeKvD89btuXcvP63LX3mzJyo5ZSDQCDrwOi8dxzbrEJjrGgXbDKWs-RgRCBoWoMbzA0DFEKP4RahyFILVdk_eeNALD7THHv0nF3_kH-AKupU14</recordid><startdate>201303</startdate><enddate>201303</enddate><creator>Jeyabharathi, D.</creator><creator>Suruliandi, A.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201303</creationdate><title>Performance analysis of feature extraction and classification techniques in CBIR</title><author>Jeyabharathi, D. ; Suruliandi, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-5beebc4dff7c1c119f8da00d6ad9599c1f0e22d0f58718fd80ff32cbd46dbd363</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Artificial neural networks</topic><topic>CBIR</topic><topic>ICA</topic><topic>Image recognition</topic><topic>LDA</topic><topic>Marine vehicles</topic><topic>PCA</topic><topic>Principal component analysis</topic><topic>Search engines</topic><topic>Support vector machines</topic><topic>SVM</topic><topic>Training</topic><toplevel>online_resources</toplevel><creatorcontrib>Jeyabharathi, D.</creatorcontrib><creatorcontrib>Suruliandi, A.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Jeyabharathi, D.</au><au>Suruliandi, A.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Performance analysis of feature extraction and classification techniques in CBIR</atitle><btitle>2013 International Conference on Circuits, Power and Computing Technologies (ICCPCT)</btitle><stitle>ICCPCT</stitle><date>2013-03</date><risdate>2013</risdate><spage>1211</spage><epage>1214</epage><pages>1211-1214</pages><isbn>9781467349215</isbn><isbn>1467349216</isbn><eisbn>9781467349222</eisbn><eisbn>9781467349208</eisbn><eisbn>1467349224</eisbn><eisbn>1467349208</eisbn><abstract>Content Based Image Retrieval (CBIR) plays an important role in multimedia search engine optimization. The most useful feature extraction techniques are Principal Component Analysis (PCA), Linear discriminant analysis (LDA), Independent Component Analysis (ICA). These techniques are used to extract the important features from a query image. Support Vector Machine (SVM) and Nearest Neighbour (NN) are two most renowned classification techniques. In this paper we analyse the performance of feature extraction techniques (PCA, LDA, and ICA) and classification techniques (SVM, NN) used in CBIR. The performance metrics are Recognition Rate, F-Score. Based on this performance evaluation models, it is observed that Principal Component Analysis with Support Vector Machine provide more recognition accuracy than others.</abstract><pub>IEEE</pub><doi>10.1109/ICCPCT.2013.6528965</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9781467349215
ispartof 2013 International Conference on Circuits, Power and Computing Technologies (ICCPCT), 2013, p.1211-1214
issn
language eng
recordid cdi_ieee_primary_6528965
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Artificial neural networks
CBIR
ICA
Image recognition
LDA
Marine vehicles
PCA
Principal component analysis
Search engines
Support vector machines
SVM
Training
title Performance analysis of feature extraction and classification techniques in CBIR
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T14%3A48%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Performance%20analysis%20of%20feature%20extraction%20and%20classification%20techniques%20in%20CBIR&rft.btitle=2013%20International%20Conference%20on%20Circuits,%20Power%20and%20Computing%20Technologies%20(ICCPCT)&rft.au=Jeyabharathi,%20D.&rft.date=2013-03&rft.spage=1211&rft.epage=1214&rft.pages=1211-1214&rft.isbn=9781467349215&rft.isbn_list=1467349216&rft_id=info:doi/10.1109/ICCPCT.2013.6528965&rft.eisbn=9781467349222&rft.eisbn_list=9781467349208&rft.eisbn_list=1467349224&rft.eisbn_list=1467349208&rft_dat=%3Cieee_6IE%3E6528965%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-5beebc4dff7c1c119f8da00d6ad9599c1f0e22d0f58718fd80ff32cbd46dbd363%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6528965&rfr_iscdi=true