Loading…
RF fingerprinting based GSM indoor localization
The demand for location-based services (LBS) in indoor environments such as shopping malls and airports has increased recently. In order to support such LBS applications accurate indoor localization systems are required. Therefore, in this paper, K-Nearest Neighbor (K-NN) and Random Decision Forest...
Saved in:
Main Authors: | , , , , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c152t-8900ffe94dc4cbb0fc9739e1bd0421baa1596aebb25f05632d907d9a8cd9fe73 |
---|---|
cites | |
container_end_page | 4 |
container_issue | |
container_start_page | 1 |
container_title | |
container_volume | |
creator | Buyruk, H. Keskin, A. K. Sendil, S. Celebi, H. Partal, H. P. Ileri, O. Zeydan, E. Ergut, S. |
description | The demand for location-based services (LBS) in indoor environments such as shopping malls and airports has increased recently. In order to support such LBS applications accurate indoor localization systems are required. Therefore, in this paper, K-Nearest Neighbor (K-NN) and Random Decision Forest (RDF) algorithms for GSM RSS based RF fingerprinting method are presented in order find the location of mobile users in indoor environments. For studying the performance of these two algoritms in realistic indoor environments, a measurement campaign is conducted in Istanbul AtaŞehir Palladium shopping mall using GSM cellular networks. The location estimation error performance of these two algoritms are obtained in the form of CDF results by using the collected GSM RSS data. Moreover, the effects of different mobile phone brands (Sony Ericsson and Nokia) on the location estimation error performance are investigated using the measurement data. According to the results, RDF method performs slightly better than K-NN method. Additionally, Sony Ericsson mobile phone provides better location estimation performance than that of Nokia mobile phone. |
doi_str_mv | 10.1109/SIU.2013.6531375 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6531375</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6531375</ieee_id><sourcerecordid>6531375</sourcerecordid><originalsourceid>FETCH-LOGICAL-c152t-8900ffe94dc4cbb0fc9739e1bd0421baa1596aebb25f05632d907d9a8cd9fe73</originalsourceid><addsrcrecordid>eNpVj01LxDAYhCMiKGvvgpf8gXbfJE3S9yiLuy6sCPtxXvLxRiK1lbYX_fUW3IunmTnM8AxjDwIqIQCXh-2pkiBUZbQSyuorVqBtRG2s0tooc_0vS7xlxTh-AMDcNtiYO7bcr3nK3TsNX0Puptlx70aKfHN45bmLfT_wtg-uzT9uyn13z26Sa0cqLrpgx_XzcfVS7t4229XTrgxCy6lsECAlwjqGOngPKaBVSMJHqKXwzgmNxpH3UieYSWVEsBFdEyImsmrBHv9mMxGdZ7RPN3yfLy_VL16nRNY</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>RF fingerprinting based GSM indoor localization</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Buyruk, H. ; Keskin, A. K. ; Sendil, S. ; Celebi, H. ; Partal, H. P. ; Ileri, O. ; Zeydan, E. ; Ergut, S.</creator><creatorcontrib>Buyruk, H. ; Keskin, A. K. ; Sendil, S. ; Celebi, H. ; Partal, H. P. ; Ileri, O. ; Zeydan, E. ; Ergut, S.</creatorcontrib><description>The demand for location-based services (LBS) in indoor environments such as shopping malls and airports has increased recently. In order to support such LBS applications accurate indoor localization systems are required. Therefore, in this paper, K-Nearest Neighbor (K-NN) and Random Decision Forest (RDF) algorithms for GSM RSS based RF fingerprinting method are presented in order find the location of mobile users in indoor environments. For studying the performance of these two algoritms in realistic indoor environments, a measurement campaign is conducted in Istanbul AtaŞehir Palladium shopping mall using GSM cellular networks. The location estimation error performance of these two algoritms are obtained in the form of CDF results by using the collected GSM RSS data. Moreover, the effects of different mobile phone brands (Sony Ericsson and Nokia) on the location estimation error performance are investigated using the measurement data. According to the results, RDF method performs slightly better than K-NN method. Additionally, Sony Ericsson mobile phone provides better location estimation performance than that of Nokia mobile phone.</description><identifier>ISBN: 9781467355629</identifier><identifier>ISBN: 1467355623</identifier><identifier>EISBN: 9781467355636</identifier><identifier>EISBN: 1467355631</identifier><identifier>EISBN: 1467355615</identifier><identifier>EISBN: 9781467355612</identifier><identifier>DOI: 10.1109/SIU.2013.6531375</identifier><language>eng</language><publisher>IEEE</publisher><subject>Estimation ; GSM ; Mobile handsets ; Mobile radio mobility management ; Palladium ; Radio frequency ; Solid modeling</subject><ispartof>2013 21st Signal Processing and Communications Applications Conference (SIU), 2013, p.1-4</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c152t-8900ffe94dc4cbb0fc9739e1bd0421baa1596aebb25f05632d907d9a8cd9fe73</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6531375$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6531375$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Buyruk, H.</creatorcontrib><creatorcontrib>Keskin, A. K.</creatorcontrib><creatorcontrib>Sendil, S.</creatorcontrib><creatorcontrib>Celebi, H.</creatorcontrib><creatorcontrib>Partal, H. P.</creatorcontrib><creatorcontrib>Ileri, O.</creatorcontrib><creatorcontrib>Zeydan, E.</creatorcontrib><creatorcontrib>Ergut, S.</creatorcontrib><title>RF fingerprinting based GSM indoor localization</title><title>2013 21st Signal Processing and Communications Applications Conference (SIU)</title><addtitle>SIU</addtitle><description>The demand for location-based services (LBS) in indoor environments such as shopping malls and airports has increased recently. In order to support such LBS applications accurate indoor localization systems are required. Therefore, in this paper, K-Nearest Neighbor (K-NN) and Random Decision Forest (RDF) algorithms for GSM RSS based RF fingerprinting method are presented in order find the location of mobile users in indoor environments. For studying the performance of these two algoritms in realistic indoor environments, a measurement campaign is conducted in Istanbul AtaŞehir Palladium shopping mall using GSM cellular networks. The location estimation error performance of these two algoritms are obtained in the form of CDF results by using the collected GSM RSS data. Moreover, the effects of different mobile phone brands (Sony Ericsson and Nokia) on the location estimation error performance are investigated using the measurement data. According to the results, RDF method performs slightly better than K-NN method. Additionally, Sony Ericsson mobile phone provides better location estimation performance than that of Nokia mobile phone.</description><subject>Estimation</subject><subject>GSM</subject><subject>Mobile handsets</subject><subject>Mobile radio mobility management</subject><subject>Palladium</subject><subject>Radio frequency</subject><subject>Solid modeling</subject><isbn>9781467355629</isbn><isbn>1467355623</isbn><isbn>9781467355636</isbn><isbn>1467355631</isbn><isbn>1467355615</isbn><isbn>9781467355612</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2013</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNpVj01LxDAYhCMiKGvvgpf8gXbfJE3S9yiLuy6sCPtxXvLxRiK1lbYX_fUW3IunmTnM8AxjDwIqIQCXh-2pkiBUZbQSyuorVqBtRG2s0tooc_0vS7xlxTh-AMDcNtiYO7bcr3nK3TsNX0Puptlx70aKfHN45bmLfT_wtg-uzT9uyn13z26Sa0cqLrpgx_XzcfVS7t4229XTrgxCy6lsECAlwjqGOngPKaBVSMJHqKXwzgmNxpH3UieYSWVEsBFdEyImsmrBHv9mMxGdZ7RPN3yfLy_VL16nRNY</recordid><startdate>201304</startdate><enddate>201304</enddate><creator>Buyruk, H.</creator><creator>Keskin, A. K.</creator><creator>Sendil, S.</creator><creator>Celebi, H.</creator><creator>Partal, H. P.</creator><creator>Ileri, O.</creator><creator>Zeydan, E.</creator><creator>Ergut, S.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201304</creationdate><title>RF fingerprinting based GSM indoor localization</title><author>Buyruk, H. ; Keskin, A. K. ; Sendil, S. ; Celebi, H. ; Partal, H. P. ; Ileri, O. ; Zeydan, E. ; Ergut, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c152t-8900ffe94dc4cbb0fc9739e1bd0421baa1596aebb25f05632d907d9a8cd9fe73</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Estimation</topic><topic>GSM</topic><topic>Mobile handsets</topic><topic>Mobile radio mobility management</topic><topic>Palladium</topic><topic>Radio frequency</topic><topic>Solid modeling</topic><toplevel>online_resources</toplevel><creatorcontrib>Buyruk, H.</creatorcontrib><creatorcontrib>Keskin, A. K.</creatorcontrib><creatorcontrib>Sendil, S.</creatorcontrib><creatorcontrib>Celebi, H.</creatorcontrib><creatorcontrib>Partal, H. P.</creatorcontrib><creatorcontrib>Ileri, O.</creatorcontrib><creatorcontrib>Zeydan, E.</creatorcontrib><creatorcontrib>Ergut, S.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Buyruk, H.</au><au>Keskin, A. K.</au><au>Sendil, S.</au><au>Celebi, H.</au><au>Partal, H. P.</au><au>Ileri, O.</au><au>Zeydan, E.</au><au>Ergut, S.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>RF fingerprinting based GSM indoor localization</atitle><btitle>2013 21st Signal Processing and Communications Applications Conference (SIU)</btitle><stitle>SIU</stitle><date>2013-04</date><risdate>2013</risdate><spage>1</spage><epage>4</epage><pages>1-4</pages><isbn>9781467355629</isbn><isbn>1467355623</isbn><eisbn>9781467355636</eisbn><eisbn>1467355631</eisbn><eisbn>1467355615</eisbn><eisbn>9781467355612</eisbn><abstract>The demand for location-based services (LBS) in indoor environments such as shopping malls and airports has increased recently. In order to support such LBS applications accurate indoor localization systems are required. Therefore, in this paper, K-Nearest Neighbor (K-NN) and Random Decision Forest (RDF) algorithms for GSM RSS based RF fingerprinting method are presented in order find the location of mobile users in indoor environments. For studying the performance of these two algoritms in realistic indoor environments, a measurement campaign is conducted in Istanbul AtaŞehir Palladium shopping mall using GSM cellular networks. The location estimation error performance of these two algoritms are obtained in the form of CDF results by using the collected GSM RSS data. Moreover, the effects of different mobile phone brands (Sony Ericsson and Nokia) on the location estimation error performance are investigated using the measurement data. According to the results, RDF method performs slightly better than K-NN method. Additionally, Sony Ericsson mobile phone provides better location estimation performance than that of Nokia mobile phone.</abstract><pub>IEEE</pub><doi>10.1109/SIU.2013.6531375</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 9781467355629 |
ispartof | 2013 21st Signal Processing and Communications Applications Conference (SIU), 2013, p.1-4 |
issn | |
language | eng |
recordid | cdi_ieee_primary_6531375 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Estimation GSM Mobile handsets Mobile radio mobility management Palladium Radio frequency Solid modeling |
title | RF fingerprinting based GSM indoor localization |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T19%3A15%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=RF%20fingerprinting%20based%20GSM%20indoor%20localization&rft.btitle=2013%2021st%20Signal%20Processing%20and%20Communications%20Applications%20Conference%20(SIU)&rft.au=Buyruk,%20H.&rft.date=2013-04&rft.spage=1&rft.epage=4&rft.pages=1-4&rft.isbn=9781467355629&rft.isbn_list=1467355623&rft_id=info:doi/10.1109/SIU.2013.6531375&rft.eisbn=9781467355636&rft.eisbn_list=1467355631&rft.eisbn_list=1467355615&rft.eisbn_list=9781467355612&rft_dat=%3Cieee_6IE%3E6531375%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c152t-8900ffe94dc4cbb0fc9739e1bd0421baa1596aebb25f05632d907d9a8cd9fe73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6531375&rfr_iscdi=true |