Loading…

RF fingerprinting based GSM indoor localization

The demand for location-based services (LBS) in indoor environments such as shopping malls and airports has increased recently. In order to support such LBS applications accurate indoor localization systems are required. Therefore, in this paper, K-Nearest Neighbor (K-NN) and Random Decision Forest...

Full description

Saved in:
Bibliographic Details
Main Authors: Buyruk, H., Keskin, A. K., Sendil, S., Celebi, H., Partal, H. P., Ileri, O., Zeydan, E., Ergut, S.
Format: Conference Proceeding
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c152t-8900ffe94dc4cbb0fc9739e1bd0421baa1596aebb25f05632d907d9a8cd9fe73
cites
container_end_page 4
container_issue
container_start_page 1
container_title
container_volume
creator Buyruk, H.
Keskin, A. K.
Sendil, S.
Celebi, H.
Partal, H. P.
Ileri, O.
Zeydan, E.
Ergut, S.
description The demand for location-based services (LBS) in indoor environments such as shopping malls and airports has increased recently. In order to support such LBS applications accurate indoor localization systems are required. Therefore, in this paper, K-Nearest Neighbor (K-NN) and Random Decision Forest (RDF) algorithms for GSM RSS based RF fingerprinting method are presented in order find the location of mobile users in indoor environments. For studying the performance of these two algoritms in realistic indoor environments, a measurement campaign is conducted in Istanbul AtaŞehir Palladium shopping mall using GSM cellular networks. The location estimation error performance of these two algoritms are obtained in the form of CDF results by using the collected GSM RSS data. Moreover, the effects of different mobile phone brands (Sony Ericsson and Nokia) on the location estimation error performance are investigated using the measurement data. According to the results, RDF method performs slightly better than K-NN method. Additionally, Sony Ericsson mobile phone provides better location estimation performance than that of Nokia mobile phone.
doi_str_mv 10.1109/SIU.2013.6531375
format conference_proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6531375</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6531375</ieee_id><sourcerecordid>6531375</sourcerecordid><originalsourceid>FETCH-LOGICAL-c152t-8900ffe94dc4cbb0fc9739e1bd0421baa1596aebb25f05632d907d9a8cd9fe73</originalsourceid><addsrcrecordid>eNpVj01LxDAYhCMiKGvvgpf8gXbfJE3S9yiLuy6sCPtxXvLxRiK1lbYX_fUW3IunmTnM8AxjDwIqIQCXh-2pkiBUZbQSyuorVqBtRG2s0tooc_0vS7xlxTh-AMDcNtiYO7bcr3nK3TsNX0Puptlx70aKfHN45bmLfT_wtg-uzT9uyn13z26Sa0cqLrpgx_XzcfVS7t4229XTrgxCy6lsECAlwjqGOngPKaBVSMJHqKXwzgmNxpH3UieYSWVEsBFdEyImsmrBHv9mMxGdZ7RPN3yfLy_VL16nRNY</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>RF fingerprinting based GSM indoor localization</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Buyruk, H. ; Keskin, A. K. ; Sendil, S. ; Celebi, H. ; Partal, H. P. ; Ileri, O. ; Zeydan, E. ; Ergut, S.</creator><creatorcontrib>Buyruk, H. ; Keskin, A. K. ; Sendil, S. ; Celebi, H. ; Partal, H. P. ; Ileri, O. ; Zeydan, E. ; Ergut, S.</creatorcontrib><description>The demand for location-based services (LBS) in indoor environments such as shopping malls and airports has increased recently. In order to support such LBS applications accurate indoor localization systems are required. Therefore, in this paper, K-Nearest Neighbor (K-NN) and Random Decision Forest (RDF) algorithms for GSM RSS based RF fingerprinting method are presented in order find the location of mobile users in indoor environments. For studying the performance of these two algoritms in realistic indoor environments, a measurement campaign is conducted in Istanbul AtaŞehir Palladium shopping mall using GSM cellular networks. The location estimation error performance of these two algoritms are obtained in the form of CDF results by using the collected GSM RSS data. Moreover, the effects of different mobile phone brands (Sony Ericsson and Nokia) on the location estimation error performance are investigated using the measurement data. According to the results, RDF method performs slightly better than K-NN method. Additionally, Sony Ericsson mobile phone provides better location estimation performance than that of Nokia mobile phone.</description><identifier>ISBN: 9781467355629</identifier><identifier>ISBN: 1467355623</identifier><identifier>EISBN: 9781467355636</identifier><identifier>EISBN: 1467355631</identifier><identifier>EISBN: 1467355615</identifier><identifier>EISBN: 9781467355612</identifier><identifier>DOI: 10.1109/SIU.2013.6531375</identifier><language>eng</language><publisher>IEEE</publisher><subject>Estimation ; GSM ; Mobile handsets ; Mobile radio mobility management ; Palladium ; Radio frequency ; Solid modeling</subject><ispartof>2013 21st Signal Processing and Communications Applications Conference (SIU), 2013, p.1-4</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c152t-8900ffe94dc4cbb0fc9739e1bd0421baa1596aebb25f05632d907d9a8cd9fe73</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6531375$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6531375$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Buyruk, H.</creatorcontrib><creatorcontrib>Keskin, A. K.</creatorcontrib><creatorcontrib>Sendil, S.</creatorcontrib><creatorcontrib>Celebi, H.</creatorcontrib><creatorcontrib>Partal, H. P.</creatorcontrib><creatorcontrib>Ileri, O.</creatorcontrib><creatorcontrib>Zeydan, E.</creatorcontrib><creatorcontrib>Ergut, S.</creatorcontrib><title>RF fingerprinting based GSM indoor localization</title><title>2013 21st Signal Processing and Communications Applications Conference (SIU)</title><addtitle>SIU</addtitle><description>The demand for location-based services (LBS) in indoor environments such as shopping malls and airports has increased recently. In order to support such LBS applications accurate indoor localization systems are required. Therefore, in this paper, K-Nearest Neighbor (K-NN) and Random Decision Forest (RDF) algorithms for GSM RSS based RF fingerprinting method are presented in order find the location of mobile users in indoor environments. For studying the performance of these two algoritms in realistic indoor environments, a measurement campaign is conducted in Istanbul AtaŞehir Palladium shopping mall using GSM cellular networks. The location estimation error performance of these two algoritms are obtained in the form of CDF results by using the collected GSM RSS data. Moreover, the effects of different mobile phone brands (Sony Ericsson and Nokia) on the location estimation error performance are investigated using the measurement data. According to the results, RDF method performs slightly better than K-NN method. Additionally, Sony Ericsson mobile phone provides better location estimation performance than that of Nokia mobile phone.</description><subject>Estimation</subject><subject>GSM</subject><subject>Mobile handsets</subject><subject>Mobile radio mobility management</subject><subject>Palladium</subject><subject>Radio frequency</subject><subject>Solid modeling</subject><isbn>9781467355629</isbn><isbn>1467355623</isbn><isbn>9781467355636</isbn><isbn>1467355631</isbn><isbn>1467355615</isbn><isbn>9781467355612</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2013</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNpVj01LxDAYhCMiKGvvgpf8gXbfJE3S9yiLuy6sCPtxXvLxRiK1lbYX_fUW3IunmTnM8AxjDwIqIQCXh-2pkiBUZbQSyuorVqBtRG2s0tooc_0vS7xlxTh-AMDcNtiYO7bcr3nK3TsNX0Puptlx70aKfHN45bmLfT_wtg-uzT9uyn13z26Sa0cqLrpgx_XzcfVS7t4229XTrgxCy6lsECAlwjqGOngPKaBVSMJHqKXwzgmNxpH3UieYSWVEsBFdEyImsmrBHv9mMxGdZ7RPN3yfLy_VL16nRNY</recordid><startdate>201304</startdate><enddate>201304</enddate><creator>Buyruk, H.</creator><creator>Keskin, A. K.</creator><creator>Sendil, S.</creator><creator>Celebi, H.</creator><creator>Partal, H. P.</creator><creator>Ileri, O.</creator><creator>Zeydan, E.</creator><creator>Ergut, S.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201304</creationdate><title>RF fingerprinting based GSM indoor localization</title><author>Buyruk, H. ; Keskin, A. K. ; Sendil, S. ; Celebi, H. ; Partal, H. P. ; Ileri, O. ; Zeydan, E. ; Ergut, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c152t-8900ffe94dc4cbb0fc9739e1bd0421baa1596aebb25f05632d907d9a8cd9fe73</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Estimation</topic><topic>GSM</topic><topic>Mobile handsets</topic><topic>Mobile radio mobility management</topic><topic>Palladium</topic><topic>Radio frequency</topic><topic>Solid modeling</topic><toplevel>online_resources</toplevel><creatorcontrib>Buyruk, H.</creatorcontrib><creatorcontrib>Keskin, A. K.</creatorcontrib><creatorcontrib>Sendil, S.</creatorcontrib><creatorcontrib>Celebi, H.</creatorcontrib><creatorcontrib>Partal, H. P.</creatorcontrib><creatorcontrib>Ileri, O.</creatorcontrib><creatorcontrib>Zeydan, E.</creatorcontrib><creatorcontrib>Ergut, S.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Buyruk, H.</au><au>Keskin, A. K.</au><au>Sendil, S.</au><au>Celebi, H.</au><au>Partal, H. P.</au><au>Ileri, O.</au><au>Zeydan, E.</au><au>Ergut, S.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>RF fingerprinting based GSM indoor localization</atitle><btitle>2013 21st Signal Processing and Communications Applications Conference (SIU)</btitle><stitle>SIU</stitle><date>2013-04</date><risdate>2013</risdate><spage>1</spage><epage>4</epage><pages>1-4</pages><isbn>9781467355629</isbn><isbn>1467355623</isbn><eisbn>9781467355636</eisbn><eisbn>1467355631</eisbn><eisbn>1467355615</eisbn><eisbn>9781467355612</eisbn><abstract>The demand for location-based services (LBS) in indoor environments such as shopping malls and airports has increased recently. In order to support such LBS applications accurate indoor localization systems are required. Therefore, in this paper, K-Nearest Neighbor (K-NN) and Random Decision Forest (RDF) algorithms for GSM RSS based RF fingerprinting method are presented in order find the location of mobile users in indoor environments. For studying the performance of these two algoritms in realistic indoor environments, a measurement campaign is conducted in Istanbul AtaŞehir Palladium shopping mall using GSM cellular networks. The location estimation error performance of these two algoritms are obtained in the form of CDF results by using the collected GSM RSS data. Moreover, the effects of different mobile phone brands (Sony Ericsson and Nokia) on the location estimation error performance are investigated using the measurement data. According to the results, RDF method performs slightly better than K-NN method. Additionally, Sony Ericsson mobile phone provides better location estimation performance than that of Nokia mobile phone.</abstract><pub>IEEE</pub><doi>10.1109/SIU.2013.6531375</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9781467355629
ispartof 2013 21st Signal Processing and Communications Applications Conference (SIU), 2013, p.1-4
issn
language eng
recordid cdi_ieee_primary_6531375
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Estimation
GSM
Mobile handsets
Mobile radio mobility management
Palladium
Radio frequency
Solid modeling
title RF fingerprinting based GSM indoor localization
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T19%3A15%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=RF%20fingerprinting%20based%20GSM%20indoor%20localization&rft.btitle=2013%2021st%20Signal%20Processing%20and%20Communications%20Applications%20Conference%20(SIU)&rft.au=Buyruk,%20H.&rft.date=2013-04&rft.spage=1&rft.epage=4&rft.pages=1-4&rft.isbn=9781467355629&rft.isbn_list=1467355623&rft_id=info:doi/10.1109/SIU.2013.6531375&rft.eisbn=9781467355636&rft.eisbn_list=1467355631&rft.eisbn_list=1467355615&rft.eisbn_list=9781467355612&rft_dat=%3Cieee_6IE%3E6531375%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c152t-8900ffe94dc4cbb0fc9739e1bd0421baa1596aebb25f05632d907d9a8cd9fe73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6531375&rfr_iscdi=true