Loading…

Chance-Constrained Optimization-Based Unbalanced Optimal Power Flow for Radial Distribution Networks

Optimal power flow (OPF) is an important tool for active management of distribution networks with renewable energy generation (REG). It is better to treat REG as stochastic variables in the distribution network OPF. In addition, distribution networks are unbalanced in nature. Thus, in this paper, a...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on power delivery 2013-07, Vol.28 (3), p.1855-1864
Main Authors: Yijia Cao, Yi Tan, Canbing Li, Rehtanz, C.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Optimal power flow (OPF) is an important tool for active management of distribution networks with renewable energy generation (REG). It is better to treat REG as stochastic variables in the distribution network OPF. In addition, distribution networks are unbalanced in nature. Thus, in this paper, a chance constrained optimization-based multiobjective OPF model is formulated to consider the forecast errors of REG in the short-term operation of radial unbalanced distribution networks. In the model, expected total active power losses of distribution lines, expected overload risk and voltage violation risk with respect to N-1 contingencies are minimized, and inequality constraints in the normal state are satisfied with a predefined probability level. Thus, the profitability and security can be balanced in the presence of stochastic REG. The proposed multiobjective OPF problem is solved by the multiobjective group search optimization and the two-point estimate method. Simulation results show that distribution network economy and postcontingency performance deteriorate with increased penetration level of REG, and the penetration level has a greater impact than the forecast errors of REG.
ISSN:0885-8977
1937-4208
DOI:10.1109/TPWRD.2013.2259509