Loading…

The Unary Arithmetical Algorithm in Bimodular Number Systems

We analyze the performance of the unary arithmetical algorithm which computes a Moebius transformation in bimodular number systems which extend the binary signed system. We give statistical evidence that in some of these systems, the algorithm has linear average time complexity.

Saved in:
Bibliographic Details
Main Authors: Kurka, P., Delacourt, M.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 134
container_issue
container_start_page 127
container_title
container_volume
creator Kurka, P.
Delacourt, M.
description We analyze the performance of the unary arithmetical algorithm which computes a Moebius transformation in bimodular number systems which extend the binary signed system. We give statistical evidence that in some of these systems, the algorithm has linear average time complexity.
doi_str_mv 10.1109/ARITH.2013.10
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_6545900</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6545900</ieee_id><sourcerecordid>6545900</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-8bbb8f6205c947936e3d44ea5a0216c7445a4442cf487040df2af63c122a66793</originalsourceid><addsrcrecordid>eNotjs1Kw0AURgdUsNQsXbmZF0i8d-bOH7iJRW2hKLTpukySiR1JWknSRd_eoK4O3-J8HMbuETJEcI_5ZlUsMwEoM4QrljhjkbSRShOJazZD0DLV1rpblgzDFwAgSIWkZuypOAS-O_r-wvM-jocujLHyLc_bz9Pv5vHIn2N3qs-t7_n7uStDz7eXYQzdcMduGt8OIfnnnO1eX4rFMl1_vK0W-TqNaNSY2rIsbaMFqMqRcVIHWRMFrzwI1JUhUp6m0qoha4CgboRvtKxQCK_1JMzZw99vDCHsv_vYTb17rUg5APkDEu1G7A</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>The Unary Arithmetical Algorithm in Bimodular Number Systems</title><source>IEEE Xplore All Conference Series</source><creator>Kurka, P. ; Delacourt, M.</creator><creatorcontrib>Kurka, P. ; Delacourt, M.</creatorcontrib><description>We analyze the performance of the unary arithmetical algorithm which computes a Moebius transformation in bimodular number systems which extend the binary signed system. We give statistical evidence that in some of these systems, the algorithm has linear average time complexity.</description><identifier>ISSN: 1063-6889</identifier><identifier>ISBN: 9781467356442</identifier><identifier>ISBN: 1467356441</identifier><identifier>DOI: 10.1109/ARITH.2013.10</identifier><identifier>CODEN: IEEPAD</identifier><language>eng</language><publisher>IEEE</publisher><subject>Absorption ; Convergence ; Electronic mail ; expansion subshifts ; extact real arithmetic ; Moebius number systems ; Random variables ; Time complexity ; Transducers ; Vectors</subject><ispartof>2013 IEEE 21st Symposium on Computer Arithmetic, 2013, p.127-134</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6545900$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54555,54920,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6545900$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Kurka, P.</creatorcontrib><creatorcontrib>Delacourt, M.</creatorcontrib><title>The Unary Arithmetical Algorithm in Bimodular Number Systems</title><title>2013 IEEE 21st Symposium on Computer Arithmetic</title><addtitle>arith</addtitle><description>We analyze the performance of the unary arithmetical algorithm which computes a Moebius transformation in bimodular number systems which extend the binary signed system. We give statistical evidence that in some of these systems, the algorithm has linear average time complexity.</description><subject>Absorption</subject><subject>Convergence</subject><subject>Electronic mail</subject><subject>expansion subshifts</subject><subject>extact real arithmetic</subject><subject>Moebius number systems</subject><subject>Random variables</subject><subject>Time complexity</subject><subject>Transducers</subject><subject>Vectors</subject><issn>1063-6889</issn><isbn>9781467356442</isbn><isbn>1467356441</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2013</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotjs1Kw0AURgdUsNQsXbmZF0i8d-bOH7iJRW2hKLTpukySiR1JWknSRd_eoK4O3-J8HMbuETJEcI_5ZlUsMwEoM4QrljhjkbSRShOJazZD0DLV1rpblgzDFwAgSIWkZuypOAS-O_r-wvM-jocujLHyLc_bz9Pv5vHIn2N3qs-t7_n7uStDz7eXYQzdcMduGt8OIfnnnO1eX4rFMl1_vK0W-TqNaNSY2rIsbaMFqMqRcVIHWRMFrzwI1JUhUp6m0qoha4CgboRvtKxQCK_1JMzZw99vDCHsv_vYTb17rUg5APkDEu1G7A</recordid><startdate>201304</startdate><enddate>201304</enddate><creator>Kurka, P.</creator><creator>Delacourt, M.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201304</creationdate><title>The Unary Arithmetical Algorithm in Bimodular Number Systems</title><author>Kurka, P. ; Delacourt, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-8bbb8f6205c947936e3d44ea5a0216c7445a4442cf487040df2af63c122a66793</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Absorption</topic><topic>Convergence</topic><topic>Electronic mail</topic><topic>expansion subshifts</topic><topic>extact real arithmetic</topic><topic>Moebius number systems</topic><topic>Random variables</topic><topic>Time complexity</topic><topic>Transducers</topic><topic>Vectors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kurka, P.</creatorcontrib><creatorcontrib>Delacourt, M.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kurka, P.</au><au>Delacourt, M.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>The Unary Arithmetical Algorithm in Bimodular Number Systems</atitle><btitle>2013 IEEE 21st Symposium on Computer Arithmetic</btitle><stitle>arith</stitle><date>2013-04</date><risdate>2013</risdate><spage>127</spage><epage>134</epage><pages>127-134</pages><issn>1063-6889</issn><isbn>9781467356442</isbn><isbn>1467356441</isbn><coden>IEEPAD</coden><abstract>We analyze the performance of the unary arithmetical algorithm which computes a Moebius transformation in bimodular number systems which extend the binary signed system. We give statistical evidence that in some of these systems, the algorithm has linear average time complexity.</abstract><pub>IEEE</pub><doi>10.1109/ARITH.2013.10</doi><tpages>8</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1063-6889
ispartof 2013 IEEE 21st Symposium on Computer Arithmetic, 2013, p.127-134
issn 1063-6889
language eng
recordid cdi_ieee_primary_6545900
source IEEE Xplore All Conference Series
subjects Absorption
Convergence
Electronic mail
expansion subshifts
extact real arithmetic
Moebius number systems
Random variables
Time complexity
Transducers
Vectors
title The Unary Arithmetical Algorithm in Bimodular Number Systems
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T15%3A48%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=The%20Unary%20Arithmetical%20Algorithm%20in%20Bimodular%20Number%20Systems&rft.btitle=2013%20IEEE%2021st%20Symposium%20on%20Computer%20Arithmetic&rft.au=Kurka,%20P.&rft.date=2013-04&rft.spage=127&rft.epage=134&rft.pages=127-134&rft.issn=1063-6889&rft.isbn=9781467356442&rft.isbn_list=1467356441&rft.coden=IEEPAD&rft_id=info:doi/10.1109/ARITH.2013.10&rft_dat=%3Cieee_CHZPO%3E6545900%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-8bbb8f6205c947936e3d44ea5a0216c7445a4442cf487040df2af63c122a66793%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6545900&rfr_iscdi=true