Loading…
The Unary Arithmetical Algorithm in Bimodular Number Systems
We analyze the performance of the unary arithmetical algorithm which computes a Moebius transformation in bimodular number systems which extend the binary signed system. We give statistical evidence that in some of these systems, the algorithm has linear average time complexity.
Saved in:
Main Authors: | , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 134 |
container_issue | |
container_start_page | 127 |
container_title | |
container_volume | |
creator | Kurka, P. Delacourt, M. |
description | We analyze the performance of the unary arithmetical algorithm which computes a Moebius transformation in bimodular number systems which extend the binary signed system. We give statistical evidence that in some of these systems, the algorithm has linear average time complexity. |
doi_str_mv | 10.1109/ARITH.2013.10 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_6545900</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6545900</ieee_id><sourcerecordid>6545900</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-8bbb8f6205c947936e3d44ea5a0216c7445a4442cf487040df2af63c122a66793</originalsourceid><addsrcrecordid>eNotjs1Kw0AURgdUsNQsXbmZF0i8d-bOH7iJRW2hKLTpukySiR1JWknSRd_eoK4O3-J8HMbuETJEcI_5ZlUsMwEoM4QrljhjkbSRShOJazZD0DLV1rpblgzDFwAgSIWkZuypOAS-O_r-wvM-jocujLHyLc_bz9Pv5vHIn2N3qs-t7_n7uStDz7eXYQzdcMduGt8OIfnnnO1eX4rFMl1_vK0W-TqNaNSY2rIsbaMFqMqRcVIHWRMFrzwI1JUhUp6m0qoha4CgboRvtKxQCK_1JMzZw99vDCHsv_vYTb17rUg5APkDEu1G7A</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>The Unary Arithmetical Algorithm in Bimodular Number Systems</title><source>IEEE Xplore All Conference Series</source><creator>Kurka, P. ; Delacourt, M.</creator><creatorcontrib>Kurka, P. ; Delacourt, M.</creatorcontrib><description>We analyze the performance of the unary arithmetical algorithm which computes a Moebius transformation in bimodular number systems which extend the binary signed system. We give statistical evidence that in some of these systems, the algorithm has linear average time complexity.</description><identifier>ISSN: 1063-6889</identifier><identifier>ISBN: 9781467356442</identifier><identifier>ISBN: 1467356441</identifier><identifier>DOI: 10.1109/ARITH.2013.10</identifier><identifier>CODEN: IEEPAD</identifier><language>eng</language><publisher>IEEE</publisher><subject>Absorption ; Convergence ; Electronic mail ; expansion subshifts ; extact real arithmetic ; Moebius number systems ; Random variables ; Time complexity ; Transducers ; Vectors</subject><ispartof>2013 IEEE 21st Symposium on Computer Arithmetic, 2013, p.127-134</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6545900$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54555,54920,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6545900$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Kurka, P.</creatorcontrib><creatorcontrib>Delacourt, M.</creatorcontrib><title>The Unary Arithmetical Algorithm in Bimodular Number Systems</title><title>2013 IEEE 21st Symposium on Computer Arithmetic</title><addtitle>arith</addtitle><description>We analyze the performance of the unary arithmetical algorithm which computes a Moebius transformation in bimodular number systems which extend the binary signed system. We give statistical evidence that in some of these systems, the algorithm has linear average time complexity.</description><subject>Absorption</subject><subject>Convergence</subject><subject>Electronic mail</subject><subject>expansion subshifts</subject><subject>extact real arithmetic</subject><subject>Moebius number systems</subject><subject>Random variables</subject><subject>Time complexity</subject><subject>Transducers</subject><subject>Vectors</subject><issn>1063-6889</issn><isbn>9781467356442</isbn><isbn>1467356441</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2013</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotjs1Kw0AURgdUsNQsXbmZF0i8d-bOH7iJRW2hKLTpukySiR1JWknSRd_eoK4O3-J8HMbuETJEcI_5ZlUsMwEoM4QrljhjkbSRShOJazZD0DLV1rpblgzDFwAgSIWkZuypOAS-O_r-wvM-jocujLHyLc_bz9Pv5vHIn2N3qs-t7_n7uStDz7eXYQzdcMduGt8OIfnnnO1eX4rFMl1_vK0W-TqNaNSY2rIsbaMFqMqRcVIHWRMFrzwI1JUhUp6m0qoha4CgboRvtKxQCK_1JMzZw99vDCHsv_vYTb17rUg5APkDEu1G7A</recordid><startdate>201304</startdate><enddate>201304</enddate><creator>Kurka, P.</creator><creator>Delacourt, M.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201304</creationdate><title>The Unary Arithmetical Algorithm in Bimodular Number Systems</title><author>Kurka, P. ; Delacourt, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-8bbb8f6205c947936e3d44ea5a0216c7445a4442cf487040df2af63c122a66793</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Absorption</topic><topic>Convergence</topic><topic>Electronic mail</topic><topic>expansion subshifts</topic><topic>extact real arithmetic</topic><topic>Moebius number systems</topic><topic>Random variables</topic><topic>Time complexity</topic><topic>Transducers</topic><topic>Vectors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kurka, P.</creatorcontrib><creatorcontrib>Delacourt, M.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kurka, P.</au><au>Delacourt, M.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>The Unary Arithmetical Algorithm in Bimodular Number Systems</atitle><btitle>2013 IEEE 21st Symposium on Computer Arithmetic</btitle><stitle>arith</stitle><date>2013-04</date><risdate>2013</risdate><spage>127</spage><epage>134</epage><pages>127-134</pages><issn>1063-6889</issn><isbn>9781467356442</isbn><isbn>1467356441</isbn><coden>IEEPAD</coden><abstract>We analyze the performance of the unary arithmetical algorithm which computes a Moebius transformation in bimodular number systems which extend the binary signed system. We give statistical evidence that in some of these systems, the algorithm has linear average time complexity.</abstract><pub>IEEE</pub><doi>10.1109/ARITH.2013.10</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1063-6889 |
ispartof | 2013 IEEE 21st Symposium on Computer Arithmetic, 2013, p.127-134 |
issn | 1063-6889 |
language | eng |
recordid | cdi_ieee_primary_6545900 |
source | IEEE Xplore All Conference Series |
subjects | Absorption Convergence Electronic mail expansion subshifts extact real arithmetic Moebius number systems Random variables Time complexity Transducers Vectors |
title | The Unary Arithmetical Algorithm in Bimodular Number Systems |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T15%3A48%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=The%20Unary%20Arithmetical%20Algorithm%20in%20Bimodular%20Number%20Systems&rft.btitle=2013%20IEEE%2021st%20Symposium%20on%20Computer%20Arithmetic&rft.au=Kurka,%20P.&rft.date=2013-04&rft.spage=127&rft.epage=134&rft.pages=127-134&rft.issn=1063-6889&rft.isbn=9781467356442&rft.isbn_list=1467356441&rft.coden=IEEPAD&rft_id=info:doi/10.1109/ARITH.2013.10&rft_dat=%3Cieee_CHZPO%3E6545900%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-8bbb8f6205c947936e3d44ea5a0216c7445a4442cf487040df2af63c122a66793%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6545900&rfr_iscdi=true |