Loading…

Stator thermal time constant

The thermal model providing motor overload protection is derived from the first order differential equation for heat rise due to current in a conductor. Only the stator thermal time constant and the service factor are the required settings. The thermal model utilizes the full thermal capacity of the...

Full description

Saved in:
Bibliographic Details
Main Authors: Steinmetz, J., Patel, S. C., Zocholl, S. E.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 7
container_issue
container_start_page 1
container_title
container_volume
creator Steinmetz, J.
Patel, S. C.
Zocholl, S. E.
description The thermal model providing motor overload protection is derived from the first order differential equation for heat rise due to current in a conductor. Only the stator thermal time constant and the service factor are the required settings. The thermal model utilizes the full thermal capacity of the motor and allows current swings and cyclic overloads that would trip conventional overcurrent protection but do not actually overheat the motor. Four examples of thermal limit curves and their equations are used to discuss the varying plotting practices in use. The paper also includes a method to calculate the stator thermal time constant using two points read from the overload curve when not available from motor data.
doi_str_mv 10.1109/ICPS.2013.6547350
format conference_proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6547350</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6547350</ieee_id><sourcerecordid>6547350</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-1cb1db9b9f5ed0ce960b0139b976567be573fd1f057c806f1aa7405a0916bfde3</originalsourceid><addsrcrecordid>eNo1T8tKw0AUvSIFtc0HiC7yA0nvncnc6Swl-CgUKlTBXZlJ7mCkaSWZjX9vwLo6DziHcwBuCUsidMt1_borFZIu2VRWG7yAG6p4YqpSH5eQObv618hXkI3jFyJOWVZWXcP9Lvl0GvL0KUPvD3nqesmb03FM_pgWMIv-MEp2xjm8Pz2-1S_FZvu8rh82RUfWpIKaQG1wwUUjLTbiGMO0aDIsG7ZBjNWxpYjGNivkSN7bCo1HRxxiK3oOd3-9nYjsv4eu98PP_nxI_wKVHD2D</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Stator thermal time constant</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Steinmetz, J. ; Patel, S. C. ; Zocholl, S. E.</creator><creatorcontrib>Steinmetz, J. ; Patel, S. C. ; Zocholl, S. E.</creatorcontrib><description>The thermal model providing motor overload protection is derived from the first order differential equation for heat rise due to current in a conductor. Only the stator thermal time constant and the service factor are the required settings. The thermal model utilizes the full thermal capacity of the motor and allows current swings and cyclic overloads that would trip conventional overcurrent protection but do not actually overheat the motor. Four examples of thermal limit curves and their equations are used to discuss the varying plotting practices in use. The paper also includes a method to calculate the stator thermal time constant using two points read from the overload curve when not available from motor data.</description><identifier>ISBN: 9781467352406</identifier><identifier>ISBN: 1467352403</identifier><identifier>EISBN: 146735242X</identifier><identifier>EISBN: 9781467352420</identifier><identifier>EISBN: 1467352411</identifier><identifier>EISBN: 9781467352413</identifier><identifier>DOI: 10.1109/ICPS.2013.6547350</identifier><language>eng</language><publisher>IEEE</publisher><subject>Cyclic overload ; inverse overcurrent curve ; motor thermal model ; service factor ; thermal limit curve ; time constant</subject><ispartof>49th IEEE/IAS Industrial &amp; Commercial Power Systems Technical Conference, 2013, p.1-7</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6547350$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2051,27904,54899</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6547350$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Steinmetz, J.</creatorcontrib><creatorcontrib>Patel, S. C.</creatorcontrib><creatorcontrib>Zocholl, S. E.</creatorcontrib><title>Stator thermal time constant</title><title>49th IEEE/IAS Industrial &amp; Commercial Power Systems Technical Conference</title><addtitle>ICPS</addtitle><description>The thermal model providing motor overload protection is derived from the first order differential equation for heat rise due to current in a conductor. Only the stator thermal time constant and the service factor are the required settings. The thermal model utilizes the full thermal capacity of the motor and allows current swings and cyclic overloads that would trip conventional overcurrent protection but do not actually overheat the motor. Four examples of thermal limit curves and their equations are used to discuss the varying plotting practices in use. The paper also includes a method to calculate the stator thermal time constant using two points read from the overload curve when not available from motor data.</description><subject>Cyclic overload</subject><subject>inverse overcurrent curve</subject><subject>motor thermal model</subject><subject>service factor</subject><subject>thermal limit curve</subject><subject>time constant</subject><isbn>9781467352406</isbn><isbn>1467352403</isbn><isbn>146735242X</isbn><isbn>9781467352420</isbn><isbn>1467352411</isbn><isbn>9781467352413</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2013</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo1T8tKw0AUvSIFtc0HiC7yA0nvncnc6Swl-CgUKlTBXZlJ7mCkaSWZjX9vwLo6DziHcwBuCUsidMt1_borFZIu2VRWG7yAG6p4YqpSH5eQObv618hXkI3jFyJOWVZWXcP9Lvl0GvL0KUPvD3nqesmb03FM_pgWMIv-MEp2xjm8Pz2-1S_FZvu8rh82RUfWpIKaQG1wwUUjLTbiGMO0aDIsG7ZBjNWxpYjGNivkSN7bCo1HRxxiK3oOd3-9nYjsv4eu98PP_nxI_wKVHD2D</recordid><startdate>201304</startdate><enddate>201304</enddate><creator>Steinmetz, J.</creator><creator>Patel, S. C.</creator><creator>Zocholl, S. E.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201304</creationdate><title>Stator thermal time constant</title><author>Steinmetz, J. ; Patel, S. C. ; Zocholl, S. E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-1cb1db9b9f5ed0ce960b0139b976567be573fd1f057c806f1aa7405a0916bfde3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Cyclic overload</topic><topic>inverse overcurrent curve</topic><topic>motor thermal model</topic><topic>service factor</topic><topic>thermal limit curve</topic><topic>time constant</topic><toplevel>online_resources</toplevel><creatorcontrib>Steinmetz, J.</creatorcontrib><creatorcontrib>Patel, S. C.</creatorcontrib><creatorcontrib>Zocholl, S. E.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Steinmetz, J.</au><au>Patel, S. C.</au><au>Zocholl, S. E.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Stator thermal time constant</atitle><btitle>49th IEEE/IAS Industrial &amp; Commercial Power Systems Technical Conference</btitle><stitle>ICPS</stitle><date>2013-04</date><risdate>2013</risdate><spage>1</spage><epage>7</epage><pages>1-7</pages><isbn>9781467352406</isbn><isbn>1467352403</isbn><eisbn>146735242X</eisbn><eisbn>9781467352420</eisbn><eisbn>1467352411</eisbn><eisbn>9781467352413</eisbn><abstract>The thermal model providing motor overload protection is derived from the first order differential equation for heat rise due to current in a conductor. Only the stator thermal time constant and the service factor are the required settings. The thermal model utilizes the full thermal capacity of the motor and allows current swings and cyclic overloads that would trip conventional overcurrent protection but do not actually overheat the motor. Four examples of thermal limit curves and their equations are used to discuss the varying plotting practices in use. The paper also includes a method to calculate the stator thermal time constant using two points read from the overload curve when not available from motor data.</abstract><pub>IEEE</pub><doi>10.1109/ICPS.2013.6547350</doi><tpages>7</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9781467352406
ispartof 49th IEEE/IAS Industrial & Commercial Power Systems Technical Conference, 2013, p.1-7
issn
language eng
recordid cdi_ieee_primary_6547350
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Cyclic overload
inverse overcurrent curve
motor thermal model
service factor
thermal limit curve
time constant
title Stator thermal time constant
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T12%3A28%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Stator%20thermal%20time%20constant&rft.btitle=49th%20IEEE/IAS%20Industrial%20&%20Commercial%20Power%20Systems%20Technical%20Conference&rft.au=Steinmetz,%20J.&rft.date=2013-04&rft.spage=1&rft.epage=7&rft.pages=1-7&rft.isbn=9781467352406&rft.isbn_list=1467352403&rft_id=info:doi/10.1109/ICPS.2013.6547350&rft.eisbn=146735242X&rft.eisbn_list=9781467352420&rft.eisbn_list=1467352411&rft.eisbn_list=9781467352413&rft_dat=%3Cieee_6IE%3E6547350%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-1cb1db9b9f5ed0ce960b0139b976567be573fd1f057c806f1aa7405a0916bfde3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6547350&rfr_iscdi=true