Loading…

Design of Kalman Filter for induction motor drive

This paper compares the standard and extended versions of kalman filter for rotor flux estimation in a voltage source inverter fed vector controlled induction motor drive. The design method for the both versions of kalman filter is presented and shown. Only simulation results are presented in this p...

Full description

Saved in:
Bibliographic Details
Main Authors: Singh, K., Singh, M.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 6
container_issue
container_start_page 1
container_title
container_volume
creator Singh, K.
Singh, M.
description This paper compares the standard and extended versions of kalman filter for rotor flux estimation in a voltage source inverter fed vector controlled induction motor drive. The design method for the both versions of kalman filter is presented and shown. Only simulation results are presented in this paper. Methodology to create KF, EKF for online identification of induction motor parameters are also described in details. The Extended Kalman Filter can be used for combined state and parameter estimation by treating selected parameters as extra states and forming an augmented state vector. Depending on whether the original state space model is linear or not, the augmented model is nonlinear in multiplication of states. A fifth order augmented state space model is developed when the EKF is applied to the simultaneous estimation of states of stator and rotor d-q current and rotor d-q fluxes. Important conclusions, together with recommendations for observer selection.
doi_str_mv 10.1109/SCES.2013.6547575
format conference_proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6547575</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6547575</ieee_id><sourcerecordid>6547575</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-85c23127ef66d1117f6ac6f19f51193bb13cffa2feecdc8c29cf897b4774489b3</originalsourceid><addsrcrecordid>eNo1j81KxDAURiMiqGMfQNzkBVpzkyY3dyl1ZhQHZjEjuBvSNJFIf6Stgm_vgOPqcBbng4-xWxAFgKD7XbXcFVKAKowuUaM-YxmhhdKg0kYSnbPrf7Fvlyybpg8hxLE1hHTF4DFM6b3nQ-Qvru1cz1epncPI4zDy1Ddffk5Dz7thPnozpu9wwy6ia6eQnbhgr6vlvnrKN9v1c_WwyROgnnOrvVQgMURjGgDAaJw3EShqAFJ1DcrH6GQMwTfeekk-WsK6RCxLS7VasLu_3RRCOHyOqXPjz-H0Uv0CzJFFKw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Design of Kalman Filter for induction motor drive</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Singh, K. ; Singh, M.</creator><creatorcontrib>Singh, K. ; Singh, M.</creatorcontrib><description>This paper compares the standard and extended versions of kalman filter for rotor flux estimation in a voltage source inverter fed vector controlled induction motor drive. The design method for the both versions of kalman filter is presented and shown. Only simulation results are presented in this paper. Methodology to create KF, EKF for online identification of induction motor parameters are also described in details. The Extended Kalman Filter can be used for combined state and parameter estimation by treating selected parameters as extra states and forming an augmented state vector. Depending on whether the original state space model is linear or not, the augmented model is nonlinear in multiplication of states. A fifth order augmented state space model is developed when the EKF is applied to the simultaneous estimation of states of stator and rotor d-q current and rotor d-q fluxes. Important conclusions, together with recommendations for observer selection.</description><identifier>ISBN: 146735628X</identifier><identifier>ISBN: 9781467356282</identifier><identifier>EISBN: 9781467356299</identifier><identifier>EISBN: 1467356301</identifier><identifier>EISBN: 9781467356305</identifier><identifier>EISBN: 1467356298</identifier><identifier>DOI: 10.1109/SCES.2013.6547575</identifier><language>eng</language><publisher>IEEE</publisher><subject>Current measurement ; Extended kalman filter ; Gaussian noise ; Induction motor parameters ; Kalman filter ; Kalman filters ; Mathematical model ; Noise ; Noise measurement ; On-line estimation ; Rotors ; Stators</subject><ispartof>2013 Students Conference on Engineering and Systems (SCES), 2013, p.1-6</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6547575$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6547575$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Singh, K.</creatorcontrib><creatorcontrib>Singh, M.</creatorcontrib><title>Design of Kalman Filter for induction motor drive</title><title>2013 Students Conference on Engineering and Systems (SCES)</title><addtitle>SCES</addtitle><description>This paper compares the standard and extended versions of kalman filter for rotor flux estimation in a voltage source inverter fed vector controlled induction motor drive. The design method for the both versions of kalman filter is presented and shown. Only simulation results are presented in this paper. Methodology to create KF, EKF for online identification of induction motor parameters are also described in details. The Extended Kalman Filter can be used for combined state and parameter estimation by treating selected parameters as extra states and forming an augmented state vector. Depending on whether the original state space model is linear or not, the augmented model is nonlinear in multiplication of states. A fifth order augmented state space model is developed when the EKF is applied to the simultaneous estimation of states of stator and rotor d-q current and rotor d-q fluxes. Important conclusions, together with recommendations for observer selection.</description><subject>Current measurement</subject><subject>Extended kalman filter</subject><subject>Gaussian noise</subject><subject>Induction motor parameters</subject><subject>Kalman filter</subject><subject>Kalman filters</subject><subject>Mathematical model</subject><subject>Noise</subject><subject>Noise measurement</subject><subject>On-line estimation</subject><subject>Rotors</subject><subject>Stators</subject><isbn>146735628X</isbn><isbn>9781467356282</isbn><isbn>9781467356299</isbn><isbn>1467356301</isbn><isbn>9781467356305</isbn><isbn>1467356298</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2013</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo1j81KxDAURiMiqGMfQNzkBVpzkyY3dyl1ZhQHZjEjuBvSNJFIf6Stgm_vgOPqcBbng4-xWxAFgKD7XbXcFVKAKowuUaM-YxmhhdKg0kYSnbPrf7Fvlyybpg8hxLE1hHTF4DFM6b3nQ-Qvru1cz1epncPI4zDy1Ddffk5Dz7thPnozpu9wwy6ia6eQnbhgr6vlvnrKN9v1c_WwyROgnnOrvVQgMURjGgDAaJw3EShqAFJ1DcrH6GQMwTfeekk-WsK6RCxLS7VasLu_3RRCOHyOqXPjz-H0Uv0CzJFFKw</recordid><startdate>201304</startdate><enddate>201304</enddate><creator>Singh, K.</creator><creator>Singh, M.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201304</creationdate><title>Design of Kalman Filter for induction motor drive</title><author>Singh, K. ; Singh, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-85c23127ef66d1117f6ac6f19f51193bb13cffa2feecdc8c29cf897b4774489b3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Current measurement</topic><topic>Extended kalman filter</topic><topic>Gaussian noise</topic><topic>Induction motor parameters</topic><topic>Kalman filter</topic><topic>Kalman filters</topic><topic>Mathematical model</topic><topic>Noise</topic><topic>Noise measurement</topic><topic>On-line estimation</topic><topic>Rotors</topic><topic>Stators</topic><toplevel>online_resources</toplevel><creatorcontrib>Singh, K.</creatorcontrib><creatorcontrib>Singh, M.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Singh, K.</au><au>Singh, M.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Design of Kalman Filter for induction motor drive</atitle><btitle>2013 Students Conference on Engineering and Systems (SCES)</btitle><stitle>SCES</stitle><date>2013-04</date><risdate>2013</risdate><spage>1</spage><epage>6</epage><pages>1-6</pages><isbn>146735628X</isbn><isbn>9781467356282</isbn><eisbn>9781467356299</eisbn><eisbn>1467356301</eisbn><eisbn>9781467356305</eisbn><eisbn>1467356298</eisbn><abstract>This paper compares the standard and extended versions of kalman filter for rotor flux estimation in a voltage source inverter fed vector controlled induction motor drive. The design method for the both versions of kalman filter is presented and shown. Only simulation results are presented in this paper. Methodology to create KF, EKF for online identification of induction motor parameters are also described in details. The Extended Kalman Filter can be used for combined state and parameter estimation by treating selected parameters as extra states and forming an augmented state vector. Depending on whether the original state space model is linear or not, the augmented model is nonlinear in multiplication of states. A fifth order augmented state space model is developed when the EKF is applied to the simultaneous estimation of states of stator and rotor d-q current and rotor d-q fluxes. Important conclusions, together with recommendations for observer selection.</abstract><pub>IEEE</pub><doi>10.1109/SCES.2013.6547575</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 146735628X
ispartof 2013 Students Conference on Engineering and Systems (SCES), 2013, p.1-6
issn
language eng
recordid cdi_ieee_primary_6547575
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Current measurement
Extended kalman filter
Gaussian noise
Induction motor parameters
Kalman filter
Kalman filters
Mathematical model
Noise
Noise measurement
On-line estimation
Rotors
Stators
title Design of Kalman Filter for induction motor drive
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T19%3A41%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Design%20of%20Kalman%20Filter%20for%20induction%20motor%20drive&rft.btitle=2013%20Students%20Conference%20on%20Engineering%20and%20Systems%20(SCES)&rft.au=Singh,%20K.&rft.date=2013-04&rft.spage=1&rft.epage=6&rft.pages=1-6&rft.isbn=146735628X&rft.isbn_list=9781467356282&rft_id=info:doi/10.1109/SCES.2013.6547575&rft.eisbn=9781467356299&rft.eisbn_list=1467356301&rft.eisbn_list=9781467356305&rft.eisbn_list=1467356298&rft_dat=%3Cieee_6IE%3E6547575%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-85c23127ef66d1117f6ac6f19f51193bb13cffa2feecdc8c29cf897b4774489b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6547575&rfr_iscdi=true