Loading…
Design of Kalman Filter for induction motor drive
This paper compares the standard and extended versions of kalman filter for rotor flux estimation in a voltage source inverter fed vector controlled induction motor drive. The design method for the both versions of kalman filter is presented and shown. Only simulation results are presented in this p...
Saved in:
Main Authors: | , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 6 |
container_issue | |
container_start_page | 1 |
container_title | |
container_volume | |
creator | Singh, K. Singh, M. |
description | This paper compares the standard and extended versions of kalman filter for rotor flux estimation in a voltage source inverter fed vector controlled induction motor drive. The design method for the both versions of kalman filter is presented and shown. Only simulation results are presented in this paper. Methodology to create KF, EKF for online identification of induction motor parameters are also described in details. The Extended Kalman Filter can be used for combined state and parameter estimation by treating selected parameters as extra states and forming an augmented state vector. Depending on whether the original state space model is linear or not, the augmented model is nonlinear in multiplication of states. A fifth order augmented state space model is developed when the EKF is applied to the simultaneous estimation of states of stator and rotor d-q current and rotor d-q fluxes. Important conclusions, together with recommendations for observer selection. |
doi_str_mv | 10.1109/SCES.2013.6547575 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6547575</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6547575</ieee_id><sourcerecordid>6547575</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-85c23127ef66d1117f6ac6f19f51193bb13cffa2feecdc8c29cf897b4774489b3</originalsourceid><addsrcrecordid>eNo1j81KxDAURiMiqGMfQNzkBVpzkyY3dyl1ZhQHZjEjuBvSNJFIf6Stgm_vgOPqcBbng4-xWxAFgKD7XbXcFVKAKowuUaM-YxmhhdKg0kYSnbPrf7Fvlyybpg8hxLE1hHTF4DFM6b3nQ-Qvru1cz1epncPI4zDy1Ddffk5Dz7thPnozpu9wwy6ia6eQnbhgr6vlvnrKN9v1c_WwyROgnnOrvVQgMURjGgDAaJw3EShqAFJ1DcrH6GQMwTfeekk-WsK6RCxLS7VasLu_3RRCOHyOqXPjz-H0Uv0CzJFFKw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Design of Kalman Filter for induction motor drive</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Singh, K. ; Singh, M.</creator><creatorcontrib>Singh, K. ; Singh, M.</creatorcontrib><description>This paper compares the standard and extended versions of kalman filter for rotor flux estimation in a voltage source inverter fed vector controlled induction motor drive. The design method for the both versions of kalman filter is presented and shown. Only simulation results are presented in this paper. Methodology to create KF, EKF for online identification of induction motor parameters are also described in details. The Extended Kalman Filter can be used for combined state and parameter estimation by treating selected parameters as extra states and forming an augmented state vector. Depending on whether the original state space model is linear or not, the augmented model is nonlinear in multiplication of states. A fifth order augmented state space model is developed when the EKF is applied to the simultaneous estimation of states of stator and rotor d-q current and rotor d-q fluxes. Important conclusions, together with recommendations for observer selection.</description><identifier>ISBN: 146735628X</identifier><identifier>ISBN: 9781467356282</identifier><identifier>EISBN: 9781467356299</identifier><identifier>EISBN: 1467356301</identifier><identifier>EISBN: 9781467356305</identifier><identifier>EISBN: 1467356298</identifier><identifier>DOI: 10.1109/SCES.2013.6547575</identifier><language>eng</language><publisher>IEEE</publisher><subject>Current measurement ; Extended kalman filter ; Gaussian noise ; Induction motor parameters ; Kalman filter ; Kalman filters ; Mathematical model ; Noise ; Noise measurement ; On-line estimation ; Rotors ; Stators</subject><ispartof>2013 Students Conference on Engineering and Systems (SCES), 2013, p.1-6</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6547575$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6547575$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Singh, K.</creatorcontrib><creatorcontrib>Singh, M.</creatorcontrib><title>Design of Kalman Filter for induction motor drive</title><title>2013 Students Conference on Engineering and Systems (SCES)</title><addtitle>SCES</addtitle><description>This paper compares the standard and extended versions of kalman filter for rotor flux estimation in a voltage source inverter fed vector controlled induction motor drive. The design method for the both versions of kalman filter is presented and shown. Only simulation results are presented in this paper. Methodology to create KF, EKF for online identification of induction motor parameters are also described in details. The Extended Kalman Filter can be used for combined state and parameter estimation by treating selected parameters as extra states and forming an augmented state vector. Depending on whether the original state space model is linear or not, the augmented model is nonlinear in multiplication of states. A fifth order augmented state space model is developed when the EKF is applied to the simultaneous estimation of states of stator and rotor d-q current and rotor d-q fluxes. Important conclusions, together with recommendations for observer selection.</description><subject>Current measurement</subject><subject>Extended kalman filter</subject><subject>Gaussian noise</subject><subject>Induction motor parameters</subject><subject>Kalman filter</subject><subject>Kalman filters</subject><subject>Mathematical model</subject><subject>Noise</subject><subject>Noise measurement</subject><subject>On-line estimation</subject><subject>Rotors</subject><subject>Stators</subject><isbn>146735628X</isbn><isbn>9781467356282</isbn><isbn>9781467356299</isbn><isbn>1467356301</isbn><isbn>9781467356305</isbn><isbn>1467356298</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2013</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo1j81KxDAURiMiqGMfQNzkBVpzkyY3dyl1ZhQHZjEjuBvSNJFIf6Stgm_vgOPqcBbng4-xWxAFgKD7XbXcFVKAKowuUaM-YxmhhdKg0kYSnbPrf7Fvlyybpg8hxLE1hHTF4DFM6b3nQ-Qvru1cz1epncPI4zDy1Ddffk5Dz7thPnozpu9wwy6ia6eQnbhgr6vlvnrKN9v1c_WwyROgnnOrvVQgMURjGgDAaJw3EShqAFJ1DcrH6GQMwTfeekk-WsK6RCxLS7VasLu_3RRCOHyOqXPjz-H0Uv0CzJFFKw</recordid><startdate>201304</startdate><enddate>201304</enddate><creator>Singh, K.</creator><creator>Singh, M.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201304</creationdate><title>Design of Kalman Filter for induction motor drive</title><author>Singh, K. ; Singh, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-85c23127ef66d1117f6ac6f19f51193bb13cffa2feecdc8c29cf897b4774489b3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Current measurement</topic><topic>Extended kalman filter</topic><topic>Gaussian noise</topic><topic>Induction motor parameters</topic><topic>Kalman filter</topic><topic>Kalman filters</topic><topic>Mathematical model</topic><topic>Noise</topic><topic>Noise measurement</topic><topic>On-line estimation</topic><topic>Rotors</topic><topic>Stators</topic><toplevel>online_resources</toplevel><creatorcontrib>Singh, K.</creatorcontrib><creatorcontrib>Singh, M.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Singh, K.</au><au>Singh, M.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Design of Kalman Filter for induction motor drive</atitle><btitle>2013 Students Conference on Engineering and Systems (SCES)</btitle><stitle>SCES</stitle><date>2013-04</date><risdate>2013</risdate><spage>1</spage><epage>6</epage><pages>1-6</pages><isbn>146735628X</isbn><isbn>9781467356282</isbn><eisbn>9781467356299</eisbn><eisbn>1467356301</eisbn><eisbn>9781467356305</eisbn><eisbn>1467356298</eisbn><abstract>This paper compares the standard and extended versions of kalman filter for rotor flux estimation in a voltage source inverter fed vector controlled induction motor drive. The design method for the both versions of kalman filter is presented and shown. Only simulation results are presented in this paper. Methodology to create KF, EKF for online identification of induction motor parameters are also described in details. The Extended Kalman Filter can be used for combined state and parameter estimation by treating selected parameters as extra states and forming an augmented state vector. Depending on whether the original state space model is linear or not, the augmented model is nonlinear in multiplication of states. A fifth order augmented state space model is developed when the EKF is applied to the simultaneous estimation of states of stator and rotor d-q current and rotor d-q fluxes. Important conclusions, together with recommendations for observer selection.</abstract><pub>IEEE</pub><doi>10.1109/SCES.2013.6547575</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 146735628X |
ispartof | 2013 Students Conference on Engineering and Systems (SCES), 2013, p.1-6 |
issn | |
language | eng |
recordid | cdi_ieee_primary_6547575 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Current measurement Extended kalman filter Gaussian noise Induction motor parameters Kalman filter Kalman filters Mathematical model Noise Noise measurement On-line estimation Rotors Stators |
title | Design of Kalman Filter for induction motor drive |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T19%3A41%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Design%20of%20Kalman%20Filter%20for%20induction%20motor%20drive&rft.btitle=2013%20Students%20Conference%20on%20Engineering%20and%20Systems%20(SCES)&rft.au=Singh,%20K.&rft.date=2013-04&rft.spage=1&rft.epage=6&rft.pages=1-6&rft.isbn=146735628X&rft.isbn_list=9781467356282&rft_id=info:doi/10.1109/SCES.2013.6547575&rft.eisbn=9781467356299&rft.eisbn_list=1467356301&rft.eisbn_list=9781467356305&rft.eisbn_list=1467356298&rft_dat=%3Cieee_6IE%3E6547575%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-85c23127ef66d1117f6ac6f19f51193bb13cffa2feecdc8c29cf897b4774489b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6547575&rfr_iscdi=true |