Loading…

Detecting users' behaviors based on nonintrusive load monitoring technologies

Conventional user behavior detection relies on a large amount of sensors and expensive monitoring devices. Moreover, the systems are usually intrusive and may suffer from deployment problems. In this paper, we design and implement an energy management system (EMS) consisting of a non-intrusive load...

Full description

Saved in:
Bibliographic Details
Main Authors: Yung-Chi Chen, Chun-Mei Chu, Shiao-Li Tsao, Tzung-Cheng Tsai
Format: Conference Proceeding
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c224t-98acb9b0f2f48102bc7704eb35b538e2db46c7514be460bf1613941253117c843
cites
container_end_page 809
container_issue
container_start_page 804
container_title
container_volume
creator Yung-Chi Chen
Chun-Mei Chu
Shiao-Li Tsao
Tzung-Cheng Tsai
description Conventional user behavior detection relies on a large amount of sensors and expensive monitoring devices. Moreover, the systems are usually intrusive and may suffer from deployment problems. In this paper, we design and implement an energy management system (EMS) consisting of a non-intrusive load monitoring (NILM) meter, gateway, server and mobile device. The NILM meter provides a non-intrusive and low-cost solution to recognize the states of appliances and to disaggregate the energy consumption of appliances in a house/building. Based on the proposed EMS, we further implement a data mining scheme to detect users' behaviors based on the usage patterns of appliances. A prototype system verifies our design concept and the simulation results show that the detection accuracy of users' behaviors is more than 80% for most of the activities.
doi_str_mv 10.1109/ICNSC.2013.6548841
format conference_proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6548841</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6548841</ieee_id><sourcerecordid>6548841</sourcerecordid><originalsourceid>FETCH-LOGICAL-c224t-98acb9b0f2f48102bc7704eb35b538e2db46c7514be460bf1613941253117c843</originalsourceid><addsrcrecordid>eNo1kMtOwzAURI0QElDyA7DxjlWKrx-xvUThVanAAlhXcXLTGqU2stNK_D1BlNVoRjqj0RByCWwOwOzNon55q-ecgZhXShoj4Yicg6y0UGCtPiaF1ebfG3ZKipw_GWMTXAkrz8jzHY7Yjj6s6S5jytfU4abZ-5gydU3GjsZAQww-jGmX_R7pEJuObqdkjOkXm_BNiENce8wX5KRvhozFQWfk4-H-vX4ql6-Pi_p2Wbacy7G0pmmddaznvTTAuGu1ZhKdUE4Jg7xzsmq1AulQVsz1UME0FrgSALo1UszI1V-vR8TVV_LbJn2vDg-IHxaBT4g</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Detecting users' behaviors based on nonintrusive load monitoring technologies</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Yung-Chi Chen ; Chun-Mei Chu ; Shiao-Li Tsao ; Tzung-Cheng Tsai</creator><creatorcontrib>Yung-Chi Chen ; Chun-Mei Chu ; Shiao-Li Tsao ; Tzung-Cheng Tsai</creatorcontrib><description>Conventional user behavior detection relies on a large amount of sensors and expensive monitoring devices. Moreover, the systems are usually intrusive and may suffer from deployment problems. In this paper, we design and implement an energy management system (EMS) consisting of a non-intrusive load monitoring (NILM) meter, gateway, server and mobile device. The NILM meter provides a non-intrusive and low-cost solution to recognize the states of appliances and to disaggregate the energy consumption of appliances in a house/building. Based on the proposed EMS, we further implement a data mining scheme to detect users' behaviors based on the usage patterns of appliances. A prototype system verifies our design concept and the simulation results show that the detection accuracy of users' behaviors is more than 80% for most of the activities.</description><identifier>ISBN: 9781467351980</identifier><identifier>ISBN: 1467351989</identifier><identifier>EISBN: 1467351997</identifier><identifier>EISBN: 9781467351997</identifier><identifier>EISBN: 9781467352000</identifier><identifier>EISBN: 1467352004</identifier><identifier>DOI: 10.1109/ICNSC.2013.6548841</identifier><language>eng</language><publisher>IEEE</publisher><subject>Actuators ; data mining ; energy management system ; Home appliances ; Logic gates ; Mobile communication ; non-intrusive load monitoring ; Sensor phenomena and characterization ; Servers ; user behavior detection</subject><ispartof>2013 10th IEEE INTERNATIONAL CONFERENCE ON NETWORKING, SENSING AND CONTROL (ICNSC), 2013, p.804-809</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c224t-98acb9b0f2f48102bc7704eb35b538e2db46c7514be460bf1613941253117c843</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6548841$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6548841$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Yung-Chi Chen</creatorcontrib><creatorcontrib>Chun-Mei Chu</creatorcontrib><creatorcontrib>Shiao-Li Tsao</creatorcontrib><creatorcontrib>Tzung-Cheng Tsai</creatorcontrib><title>Detecting users' behaviors based on nonintrusive load monitoring technologies</title><title>2013 10th IEEE INTERNATIONAL CONFERENCE ON NETWORKING, SENSING AND CONTROL (ICNSC)</title><addtitle>ICNSC</addtitle><description>Conventional user behavior detection relies on a large amount of sensors and expensive monitoring devices. Moreover, the systems are usually intrusive and may suffer from deployment problems. In this paper, we design and implement an energy management system (EMS) consisting of a non-intrusive load monitoring (NILM) meter, gateway, server and mobile device. The NILM meter provides a non-intrusive and low-cost solution to recognize the states of appliances and to disaggregate the energy consumption of appliances in a house/building. Based on the proposed EMS, we further implement a data mining scheme to detect users' behaviors based on the usage patterns of appliances. A prototype system verifies our design concept and the simulation results show that the detection accuracy of users' behaviors is more than 80% for most of the activities.</description><subject>Actuators</subject><subject>data mining</subject><subject>energy management system</subject><subject>Home appliances</subject><subject>Logic gates</subject><subject>Mobile communication</subject><subject>non-intrusive load monitoring</subject><subject>Sensor phenomena and characterization</subject><subject>Servers</subject><subject>user behavior detection</subject><isbn>9781467351980</isbn><isbn>1467351989</isbn><isbn>1467351997</isbn><isbn>9781467351997</isbn><isbn>9781467352000</isbn><isbn>1467352004</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2013</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo1kMtOwzAURI0QElDyA7DxjlWKrx-xvUThVanAAlhXcXLTGqU2stNK_D1BlNVoRjqj0RByCWwOwOzNon55q-ecgZhXShoj4Yicg6y0UGCtPiaF1ebfG3ZKipw_GWMTXAkrz8jzHY7Yjj6s6S5jytfU4abZ-5gydU3GjsZAQww-jGmX_R7pEJuObqdkjOkXm_BNiENce8wX5KRvhozFQWfk4-H-vX4ql6-Pi_p2Wbacy7G0pmmddaznvTTAuGu1ZhKdUE4Jg7xzsmq1AulQVsz1UME0FrgSALo1UszI1V-vR8TVV_LbJn2vDg-IHxaBT4g</recordid><startdate>201304</startdate><enddate>201304</enddate><creator>Yung-Chi Chen</creator><creator>Chun-Mei Chu</creator><creator>Shiao-Li Tsao</creator><creator>Tzung-Cheng Tsai</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201304</creationdate><title>Detecting users' behaviors based on nonintrusive load monitoring technologies</title><author>Yung-Chi Chen ; Chun-Mei Chu ; Shiao-Li Tsao ; Tzung-Cheng Tsai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c224t-98acb9b0f2f48102bc7704eb35b538e2db46c7514be460bf1613941253117c843</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Actuators</topic><topic>data mining</topic><topic>energy management system</topic><topic>Home appliances</topic><topic>Logic gates</topic><topic>Mobile communication</topic><topic>non-intrusive load monitoring</topic><topic>Sensor phenomena and characterization</topic><topic>Servers</topic><topic>user behavior detection</topic><toplevel>online_resources</toplevel><creatorcontrib>Yung-Chi Chen</creatorcontrib><creatorcontrib>Chun-Mei Chu</creatorcontrib><creatorcontrib>Shiao-Li Tsao</creatorcontrib><creatorcontrib>Tzung-Cheng Tsai</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Explore</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yung-Chi Chen</au><au>Chun-Mei Chu</au><au>Shiao-Li Tsao</au><au>Tzung-Cheng Tsai</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Detecting users' behaviors based on nonintrusive load monitoring technologies</atitle><btitle>2013 10th IEEE INTERNATIONAL CONFERENCE ON NETWORKING, SENSING AND CONTROL (ICNSC)</btitle><stitle>ICNSC</stitle><date>2013-04</date><risdate>2013</risdate><spage>804</spage><epage>809</epage><pages>804-809</pages><isbn>9781467351980</isbn><isbn>1467351989</isbn><eisbn>1467351997</eisbn><eisbn>9781467351997</eisbn><eisbn>9781467352000</eisbn><eisbn>1467352004</eisbn><abstract>Conventional user behavior detection relies on a large amount of sensors and expensive monitoring devices. Moreover, the systems are usually intrusive and may suffer from deployment problems. In this paper, we design and implement an energy management system (EMS) consisting of a non-intrusive load monitoring (NILM) meter, gateway, server and mobile device. The NILM meter provides a non-intrusive and low-cost solution to recognize the states of appliances and to disaggregate the energy consumption of appliances in a house/building. Based on the proposed EMS, we further implement a data mining scheme to detect users' behaviors based on the usage patterns of appliances. A prototype system verifies our design concept and the simulation results show that the detection accuracy of users' behaviors is more than 80% for most of the activities.</abstract><pub>IEEE</pub><doi>10.1109/ICNSC.2013.6548841</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9781467351980
ispartof 2013 10th IEEE INTERNATIONAL CONFERENCE ON NETWORKING, SENSING AND CONTROL (ICNSC), 2013, p.804-809
issn
language eng
recordid cdi_ieee_primary_6548841
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Actuators
data mining
energy management system
Home appliances
Logic gates
Mobile communication
non-intrusive load monitoring
Sensor phenomena and characterization
Servers
user behavior detection
title Detecting users' behaviors based on nonintrusive load monitoring technologies
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T19%3A01%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Detecting%20users'%20behaviors%20based%20on%20nonintrusive%20load%20monitoring%20technologies&rft.btitle=2013%2010th%20IEEE%20INTERNATIONAL%20CONFERENCE%20ON%20NETWORKING,%20SENSING%20AND%20CONTROL%20(ICNSC)&rft.au=Yung-Chi%20Chen&rft.date=2013-04&rft.spage=804&rft.epage=809&rft.pages=804-809&rft.isbn=9781467351980&rft.isbn_list=1467351989&rft_id=info:doi/10.1109/ICNSC.2013.6548841&rft.eisbn=1467351997&rft.eisbn_list=9781467351997&rft.eisbn_list=9781467352000&rft.eisbn_list=1467352004&rft_dat=%3Cieee_6IE%3E6548841%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c224t-98acb9b0f2f48102bc7704eb35b538e2db46c7514be460bf1613941253117c843%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6548841&rfr_iscdi=true