Loading…

Urban feature extraction on simulated WorldView-2 images

This work presents a procedure for simulating the eight multispectral bands of the WorldView-2 satellite by means of bands available in the airborne sensor HSS (Hyperspectral Scanner System). Both the original and simulated images were classified using the SAM (Spectral Angle Mapper) algorithm, aimi...

Full description

Saved in:
Bibliographic Details
Main Authors: dos Anjos, Camila Souza, de Almeida, Claudia Maria, Galvao, Lenio Soares, Garcia Fonseca, Leila Maria
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 287
container_issue
container_start_page 284
container_title
container_volume
creator dos Anjos, Camila Souza
de Almeida, Claudia Maria
Galvao, Lenio Soares
Garcia Fonseca, Leila Maria
description This work presents a procedure for simulating the eight multispectral bands of the WorldView-2 satellite by means of bands available in the airborne sensor HSS (Hyperspectral Scanner System). Both the original and simulated images were classified using the SAM (Spectral Angle Mapper) algorithm, aiming to discriminate intra-urban targets, namely: French tiles, asphalt/concrete, steel and aluminum tiles, bare soil, native arborous vegetation, and grass. The simulated images proved to be suitable for the detection of all aforementioned targets.
doi_str_mv 10.1109/JURSE.2013.6550720
format conference_proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6550720</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6550720</ieee_id><sourcerecordid>6550720</sourcerecordid><originalsourceid>FETCH-LOGICAL-i219t-47a897644f9b39f646b16e44a8a09613a4f361f3f92a276f59702ecddcd456623</originalsourceid><addsrcrecordid>eNo1j91Kw0AUhFdEUGteQG_yAolnz27251JKtUpBUKOX5SQ5KytpK5sU9e0NWGFgmItvhhHiUkIpJfjrh_rpeVEiSFWaqgKLcCTOpbbeA0p0xyLz1v1nhaciG4YPAJhgC06eCVenhrZ5YBr3iXP-HhO1Y9xt80lD3Ox7GrnL33ap714jfxWYxw2983AhTgL1A2cHn4n6dvEyXxarx7v7-c2qiCj9WGhLzlujdfCN8sFo00jDWpMj8EYq0kEZGVTwSGhNqLwF5Lbr2k5XxqCaiau_3sjM6880raef9eGs-gUmdkbs</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Urban feature extraction on simulated WorldView-2 images</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>dos Anjos, Camila Souza ; de Almeida, Claudia Maria ; Galvao, Lenio Soares ; Garcia Fonseca, Leila Maria</creator><creatorcontrib>dos Anjos, Camila Souza ; de Almeida, Claudia Maria ; Galvao, Lenio Soares ; Garcia Fonseca, Leila Maria</creatorcontrib><description>This work presents a procedure for simulating the eight multispectral bands of the WorldView-2 satellite by means of bands available in the airborne sensor HSS (Hyperspectral Scanner System). Both the original and simulated images were classified using the SAM (Spectral Angle Mapper) algorithm, aiming to discriminate intra-urban targets, namely: French tiles, asphalt/concrete, steel and aluminum tiles, bare soil, native arborous vegetation, and grass. The simulated images proved to be suitable for the detection of all aforementioned targets.</description><identifier>ISBN: 9781479902132</identifier><identifier>ISBN: 1479902136</identifier><identifier>EISBN: 1479902128</identifier><identifier>EISBN: 9781479902118</identifier><identifier>EISBN: 147990211X</identifier><identifier>EISBN: 9781479902125</identifier><identifier>DOI: 10.1109/JURSE.2013.6550720</identifier><language>eng</language><publisher>IEEE</publisher><subject>Accuracy ; Feature extraction ; Hyperspectral imaging ; Soil ; Spatial resolution ; Vegetation mapping</subject><ispartof>Joint Urban Remote Sensing Event 2013, 2013, p.284-287</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6550720$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2057,27924,54919</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6550720$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>dos Anjos, Camila Souza</creatorcontrib><creatorcontrib>de Almeida, Claudia Maria</creatorcontrib><creatorcontrib>Galvao, Lenio Soares</creatorcontrib><creatorcontrib>Garcia Fonseca, Leila Maria</creatorcontrib><title>Urban feature extraction on simulated WorldView-2 images</title><title>Joint Urban Remote Sensing Event 2013</title><addtitle>JURSE</addtitle><description>This work presents a procedure for simulating the eight multispectral bands of the WorldView-2 satellite by means of bands available in the airborne sensor HSS (Hyperspectral Scanner System). Both the original and simulated images were classified using the SAM (Spectral Angle Mapper) algorithm, aiming to discriminate intra-urban targets, namely: French tiles, asphalt/concrete, steel and aluminum tiles, bare soil, native arborous vegetation, and grass. The simulated images proved to be suitable for the detection of all aforementioned targets.</description><subject>Accuracy</subject><subject>Feature extraction</subject><subject>Hyperspectral imaging</subject><subject>Soil</subject><subject>Spatial resolution</subject><subject>Vegetation mapping</subject><isbn>9781479902132</isbn><isbn>1479902136</isbn><isbn>1479902128</isbn><isbn>9781479902118</isbn><isbn>147990211X</isbn><isbn>9781479902125</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2013</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo1j91Kw0AUhFdEUGteQG_yAolnz27251JKtUpBUKOX5SQ5KytpK5sU9e0NWGFgmItvhhHiUkIpJfjrh_rpeVEiSFWaqgKLcCTOpbbeA0p0xyLz1v1nhaciG4YPAJhgC06eCVenhrZ5YBr3iXP-HhO1Y9xt80lD3Ox7GrnL33ap714jfxWYxw2983AhTgL1A2cHn4n6dvEyXxarx7v7-c2qiCj9WGhLzlujdfCN8sFo00jDWpMj8EYq0kEZGVTwSGhNqLwF5Lbr2k5XxqCaiau_3sjM6880raef9eGs-gUmdkbs</recordid><startdate>20130101</startdate><enddate>20130101</enddate><creator>dos Anjos, Camila Souza</creator><creator>de Almeida, Claudia Maria</creator><creator>Galvao, Lenio Soares</creator><creator>Garcia Fonseca, Leila Maria</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20130101</creationdate><title>Urban feature extraction on simulated WorldView-2 images</title><author>dos Anjos, Camila Souza ; de Almeida, Claudia Maria ; Galvao, Lenio Soares ; Garcia Fonseca, Leila Maria</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i219t-47a897644f9b39f646b16e44a8a09613a4f361f3f92a276f59702ecddcd456623</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Accuracy</topic><topic>Feature extraction</topic><topic>Hyperspectral imaging</topic><topic>Soil</topic><topic>Spatial resolution</topic><topic>Vegetation mapping</topic><toplevel>online_resources</toplevel><creatorcontrib>dos Anjos, Camila Souza</creatorcontrib><creatorcontrib>de Almeida, Claudia Maria</creatorcontrib><creatorcontrib>Galvao, Lenio Soares</creatorcontrib><creatorcontrib>Garcia Fonseca, Leila Maria</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore Digital Library</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>dos Anjos, Camila Souza</au><au>de Almeida, Claudia Maria</au><au>Galvao, Lenio Soares</au><au>Garcia Fonseca, Leila Maria</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Urban feature extraction on simulated WorldView-2 images</atitle><btitle>Joint Urban Remote Sensing Event 2013</btitle><stitle>JURSE</stitle><date>2013-01-01</date><risdate>2013</risdate><spage>284</spage><epage>287</epage><pages>284-287</pages><isbn>9781479902132</isbn><isbn>1479902136</isbn><eisbn>1479902128</eisbn><eisbn>9781479902118</eisbn><eisbn>147990211X</eisbn><eisbn>9781479902125</eisbn><abstract>This work presents a procedure for simulating the eight multispectral bands of the WorldView-2 satellite by means of bands available in the airborne sensor HSS (Hyperspectral Scanner System). Both the original and simulated images were classified using the SAM (Spectral Angle Mapper) algorithm, aiming to discriminate intra-urban targets, namely: French tiles, asphalt/concrete, steel and aluminum tiles, bare soil, native arborous vegetation, and grass. The simulated images proved to be suitable for the detection of all aforementioned targets.</abstract><pub>IEEE</pub><doi>10.1109/JURSE.2013.6550720</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9781479902132
ispartof Joint Urban Remote Sensing Event 2013, 2013, p.284-287
issn
language eng
recordid cdi_ieee_primary_6550720
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Accuracy
Feature extraction
Hyperspectral imaging
Soil
Spatial resolution
Vegetation mapping
title Urban feature extraction on simulated WorldView-2 images
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T19%3A22%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Urban%20feature%20extraction%20on%20simulated%20WorldView-2%20images&rft.btitle=Joint%20Urban%20Remote%20Sensing%20Event%202013&rft.au=dos%20Anjos,%20Camila%20Souza&rft.date=2013-01-01&rft.spage=284&rft.epage=287&rft.pages=284-287&rft.isbn=9781479902132&rft.isbn_list=1479902136&rft_id=info:doi/10.1109/JURSE.2013.6550720&rft.eisbn=1479902128&rft.eisbn_list=9781479902118&rft.eisbn_list=147990211X&rft.eisbn_list=9781479902125&rft_dat=%3Cieee_6IE%3E6550720%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i219t-47a897644f9b39f646b16e44a8a09613a4f361f3f92a276f59702ecddcd456623%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6550720&rfr_iscdi=true