Loading…

A multi-Gaussian component EDA with restarting applied to direction of arrival tracking

This paper analyzes the application of a multi-population Gaussian-based estimation of distribution algorithm equipped with a restarting strategy and mutation, named MGcEDA, to the problem of estimating the Direction of Arrival (DOA) of time-varying plane waves impinging on a uniform linear array of...

Full description

Saved in:
Bibliographic Details
Main Authors: Goncalves, Andre R., Boccato, Levy, Attux, Romis, Von Zuben, Fernando J.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 1563
container_issue
container_start_page 1556
container_title
container_volume
creator Goncalves, Andre R.
Boccato, Levy
Attux, Romis
Von Zuben, Fernando J.
description This paper analyzes the application of a multi-population Gaussian-based estimation of distribution algorithm equipped with a restarting strategy and mutation, named MGcEDA, to the problem of estimating the Direction of Arrival (DOA) of time-varying plane waves impinging on a uniform linear array of sensors. This problem requires the minimization of a dynamic cost function which is non-linear, non-quadratic, multimodal and variant with respect to the signal-to-noise ratio. Experiments showed that MGcEDA was able to quickly respond to changes in the source features in scenarios with different levels of noise and number of signals. Moreover, MGcEDA outperforms a previously proposed approach in all considered experiments in terms of well known performance measures.
doi_str_mv 10.1109/CEC.2013.6557747
format conference_proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6557747</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6557747</ieee_id><sourcerecordid>6557747</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-d73dede3c500caf51ed1c7012e6506f8d5f961ed36daabcd7e72ef2f94b139fd3</originalsourceid><addsrcrecordid>eNpFkM1KAzEYReMfWGv3gpu8wNQvk8lkshzGsQoFN4rdlTT5otH5I5NafHsHLLi6cM_lLC4hNwyWjIG6q-pqmQLjy1wIKTN5Qq5YJpWCTKSbUzJjKmMJQJqf_QNenE8ACpVIWWwuyWIcPwFg8kkAPiNvJW33TfTJSu_H0euOmr4d-g67SOv7kh58_KABx6hD9N071cPQeLQ09tT6gCb6vqO9ozoE_60bGoM2X9Pwmlw43Yy4OOacvD7UL9Vjsn5ePVXlOvFMiphYyS1a5EYAGO0EQ8uMBJZiLiB3hRVO5VPJc6v1zliJMkWXOpXtGFfO8jm5_fN6RNwOwbc6_GyPB_Ff4PRXIg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A multi-Gaussian component EDA with restarting applied to direction of arrival tracking</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Goncalves, Andre R. ; Boccato, Levy ; Attux, Romis ; Von Zuben, Fernando J.</creator><creatorcontrib>Goncalves, Andre R. ; Boccato, Levy ; Attux, Romis ; Von Zuben, Fernando J.</creatorcontrib><description>This paper analyzes the application of a multi-population Gaussian-based estimation of distribution algorithm equipped with a restarting strategy and mutation, named MGcEDA, to the problem of estimating the Direction of Arrival (DOA) of time-varying plane waves impinging on a uniform linear array of sensors. This problem requires the minimization of a dynamic cost function which is non-linear, non-quadratic, multimodal and variant with respect to the signal-to-noise ratio. Experiments showed that MGcEDA was able to quickly respond to changes in the source features in scenarios with different levels of noise and number of signals. Moreover, MGcEDA outperforms a previously proposed approach in all considered experiments in terms of well known performance measures.</description><identifier>ISSN: 1089-778X</identifier><identifier>ISBN: 1479904538</identifier><identifier>ISBN: 9781479904532</identifier><identifier>EISSN: 1941-0026</identifier><identifier>EISBN: 147990452X</identifier><identifier>EISBN: 9781479904525</identifier><identifier>EISBN: 9781479904549</identifier><identifier>EISBN: 1479904546</identifier><identifier>EISBN: 9781479904518</identifier><identifier>EISBN: 1479904511</identifier><identifier>DOI: 10.1109/CEC.2013.6557747</identifier><language>eng</language><publisher>IEEE</publisher><subject>Covariance matrices ; Direction of Arrival estimation ; Estimation ; Estimation of distribution algorithm ; Heuristic algorithms ; Optimization in dynamic environments ; Sensors ; Sociology</subject><ispartof>2013 IEEE Congress on Evolutionary Computation, 2013, p.1556-1563</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6557747$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2056,27924,54554,54795,54919,54931</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6557747$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Goncalves, Andre R.</creatorcontrib><creatorcontrib>Boccato, Levy</creatorcontrib><creatorcontrib>Attux, Romis</creatorcontrib><creatorcontrib>Von Zuben, Fernando J.</creatorcontrib><title>A multi-Gaussian component EDA with restarting applied to direction of arrival tracking</title><title>2013 IEEE Congress on Evolutionary Computation</title><addtitle>CEC</addtitle><description>This paper analyzes the application of a multi-population Gaussian-based estimation of distribution algorithm equipped with a restarting strategy and mutation, named MGcEDA, to the problem of estimating the Direction of Arrival (DOA) of time-varying plane waves impinging on a uniform linear array of sensors. This problem requires the minimization of a dynamic cost function which is non-linear, non-quadratic, multimodal and variant with respect to the signal-to-noise ratio. Experiments showed that MGcEDA was able to quickly respond to changes in the source features in scenarios with different levels of noise and number of signals. Moreover, MGcEDA outperforms a previously proposed approach in all considered experiments in terms of well known performance measures.</description><subject>Covariance matrices</subject><subject>Direction of Arrival estimation</subject><subject>Estimation</subject><subject>Estimation of distribution algorithm</subject><subject>Heuristic algorithms</subject><subject>Optimization in dynamic environments</subject><subject>Sensors</subject><subject>Sociology</subject><issn>1089-778X</issn><issn>1941-0026</issn><isbn>1479904538</isbn><isbn>9781479904532</isbn><isbn>147990452X</isbn><isbn>9781479904525</isbn><isbn>9781479904549</isbn><isbn>1479904546</isbn><isbn>9781479904518</isbn><isbn>1479904511</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2013</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNpFkM1KAzEYReMfWGv3gpu8wNQvk8lkshzGsQoFN4rdlTT5otH5I5NafHsHLLi6cM_lLC4hNwyWjIG6q-pqmQLjy1wIKTN5Qq5YJpWCTKSbUzJjKmMJQJqf_QNenE8ACpVIWWwuyWIcPwFg8kkAPiNvJW33TfTJSu_H0euOmr4d-g67SOv7kh58_KABx6hD9N071cPQeLQ09tT6gCb6vqO9ozoE_60bGoM2X9Pwmlw43Yy4OOacvD7UL9Vjsn5ePVXlOvFMiphYyS1a5EYAGO0EQ8uMBJZiLiB3hRVO5VPJc6v1zliJMkWXOpXtGFfO8jm5_fN6RNwOwbc6_GyPB_Ff4PRXIg</recordid><startdate>201306</startdate><enddate>201306</enddate><creator>Goncalves, Andre R.</creator><creator>Boccato, Levy</creator><creator>Attux, Romis</creator><creator>Von Zuben, Fernando J.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201306</creationdate><title>A multi-Gaussian component EDA with restarting applied to direction of arrival tracking</title><author>Goncalves, Andre R. ; Boccato, Levy ; Attux, Romis ; Von Zuben, Fernando J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-d73dede3c500caf51ed1c7012e6506f8d5f961ed36daabcd7e72ef2f94b139fd3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Covariance matrices</topic><topic>Direction of Arrival estimation</topic><topic>Estimation</topic><topic>Estimation of distribution algorithm</topic><topic>Heuristic algorithms</topic><topic>Optimization in dynamic environments</topic><topic>Sensors</topic><topic>Sociology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Goncalves, Andre R.</creatorcontrib><creatorcontrib>Boccato, Levy</creatorcontrib><creatorcontrib>Attux, Romis</creatorcontrib><creatorcontrib>Von Zuben, Fernando J.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library Online</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Goncalves, Andre R.</au><au>Boccato, Levy</au><au>Attux, Romis</au><au>Von Zuben, Fernando J.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A multi-Gaussian component EDA with restarting applied to direction of arrival tracking</atitle><btitle>2013 IEEE Congress on Evolutionary Computation</btitle><stitle>CEC</stitle><date>2013-06</date><risdate>2013</risdate><spage>1556</spage><epage>1563</epage><pages>1556-1563</pages><issn>1089-778X</issn><eissn>1941-0026</eissn><isbn>1479904538</isbn><isbn>9781479904532</isbn><eisbn>147990452X</eisbn><eisbn>9781479904525</eisbn><eisbn>9781479904549</eisbn><eisbn>1479904546</eisbn><eisbn>9781479904518</eisbn><eisbn>1479904511</eisbn><abstract>This paper analyzes the application of a multi-population Gaussian-based estimation of distribution algorithm equipped with a restarting strategy and mutation, named MGcEDA, to the problem of estimating the Direction of Arrival (DOA) of time-varying plane waves impinging on a uniform linear array of sensors. This problem requires the minimization of a dynamic cost function which is non-linear, non-quadratic, multimodal and variant with respect to the signal-to-noise ratio. Experiments showed that MGcEDA was able to quickly respond to changes in the source features in scenarios with different levels of noise and number of signals. Moreover, MGcEDA outperforms a previously proposed approach in all considered experiments in terms of well known performance measures.</abstract><pub>IEEE</pub><doi>10.1109/CEC.2013.6557747</doi><tpages>8</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1089-778X
ispartof 2013 IEEE Congress on Evolutionary Computation, 2013, p.1556-1563
issn 1089-778X
1941-0026
language eng
recordid cdi_ieee_primary_6557747
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Covariance matrices
Direction of Arrival estimation
Estimation
Estimation of distribution algorithm
Heuristic algorithms
Optimization in dynamic environments
Sensors
Sociology
title A multi-Gaussian component EDA with restarting applied to direction of arrival tracking
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T08%3A43%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20multi-Gaussian%20component%20EDA%20with%20restarting%20applied%20to%20direction%20of%20arrival%20tracking&rft.btitle=2013%20IEEE%20Congress%20on%20Evolutionary%20Computation&rft.au=Goncalves,%20Andre%20R.&rft.date=2013-06&rft.spage=1556&rft.epage=1563&rft.pages=1556-1563&rft.issn=1089-778X&rft.eissn=1941-0026&rft.isbn=1479904538&rft.isbn_list=9781479904532&rft_id=info:doi/10.1109/CEC.2013.6557747&rft.eisbn=147990452X&rft.eisbn_list=9781479904525&rft.eisbn_list=9781479904549&rft.eisbn_list=1479904546&rft.eisbn_list=9781479904518&rft.eisbn_list=1479904511&rft_dat=%3Cieee_6IE%3E6557747%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-d73dede3c500caf51ed1c7012e6506f8d5f961ed36daabcd7e72ef2f94b139fd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6557747&rfr_iscdi=true