Loading…
A multi-Gaussian component EDA with restarting applied to direction of arrival tracking
This paper analyzes the application of a multi-population Gaussian-based estimation of distribution algorithm equipped with a restarting strategy and mutation, named MGcEDA, to the problem of estimating the Direction of Arrival (DOA) of time-varying plane waves impinging on a uniform linear array of...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 1563 |
container_issue | |
container_start_page | 1556 |
container_title | |
container_volume | |
creator | Goncalves, Andre R. Boccato, Levy Attux, Romis Von Zuben, Fernando J. |
description | This paper analyzes the application of a multi-population Gaussian-based estimation of distribution algorithm equipped with a restarting strategy and mutation, named MGcEDA, to the problem of estimating the Direction of Arrival (DOA) of time-varying plane waves impinging on a uniform linear array of sensors. This problem requires the minimization of a dynamic cost function which is non-linear, non-quadratic, multimodal and variant with respect to the signal-to-noise ratio. Experiments showed that MGcEDA was able to quickly respond to changes in the source features in scenarios with different levels of noise and number of signals. Moreover, MGcEDA outperforms a previously proposed approach in all considered experiments in terms of well known performance measures. |
doi_str_mv | 10.1109/CEC.2013.6557747 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6557747</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6557747</ieee_id><sourcerecordid>6557747</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-d73dede3c500caf51ed1c7012e6506f8d5f961ed36daabcd7e72ef2f94b139fd3</originalsourceid><addsrcrecordid>eNpFkM1KAzEYReMfWGv3gpu8wNQvk8lkshzGsQoFN4rdlTT5otH5I5NafHsHLLi6cM_lLC4hNwyWjIG6q-pqmQLjy1wIKTN5Qq5YJpWCTKSbUzJjKmMJQJqf_QNenE8ACpVIWWwuyWIcPwFg8kkAPiNvJW33TfTJSu_H0euOmr4d-g67SOv7kh58_KABx6hD9N071cPQeLQ09tT6gCb6vqO9ozoE_60bGoM2X9Pwmlw43Yy4OOacvD7UL9Vjsn5ePVXlOvFMiphYyS1a5EYAGO0EQ8uMBJZiLiB3hRVO5VPJc6v1zliJMkWXOpXtGFfO8jm5_fN6RNwOwbc6_GyPB_Ff4PRXIg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A multi-Gaussian component EDA with restarting applied to direction of arrival tracking</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Goncalves, Andre R. ; Boccato, Levy ; Attux, Romis ; Von Zuben, Fernando J.</creator><creatorcontrib>Goncalves, Andre R. ; Boccato, Levy ; Attux, Romis ; Von Zuben, Fernando J.</creatorcontrib><description>This paper analyzes the application of a multi-population Gaussian-based estimation of distribution algorithm equipped with a restarting strategy and mutation, named MGcEDA, to the problem of estimating the Direction of Arrival (DOA) of time-varying plane waves impinging on a uniform linear array of sensors. This problem requires the minimization of a dynamic cost function which is non-linear, non-quadratic, multimodal and variant with respect to the signal-to-noise ratio. Experiments showed that MGcEDA was able to quickly respond to changes in the source features in scenarios with different levels of noise and number of signals. Moreover, MGcEDA outperforms a previously proposed approach in all considered experiments in terms of well known performance measures.</description><identifier>ISSN: 1089-778X</identifier><identifier>ISBN: 1479904538</identifier><identifier>ISBN: 9781479904532</identifier><identifier>EISSN: 1941-0026</identifier><identifier>EISBN: 147990452X</identifier><identifier>EISBN: 9781479904525</identifier><identifier>EISBN: 9781479904549</identifier><identifier>EISBN: 1479904546</identifier><identifier>EISBN: 9781479904518</identifier><identifier>EISBN: 1479904511</identifier><identifier>DOI: 10.1109/CEC.2013.6557747</identifier><language>eng</language><publisher>IEEE</publisher><subject>Covariance matrices ; Direction of Arrival estimation ; Estimation ; Estimation of distribution algorithm ; Heuristic algorithms ; Optimization in dynamic environments ; Sensors ; Sociology</subject><ispartof>2013 IEEE Congress on Evolutionary Computation, 2013, p.1556-1563</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6557747$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2056,27924,54554,54795,54919,54931</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6557747$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Goncalves, Andre R.</creatorcontrib><creatorcontrib>Boccato, Levy</creatorcontrib><creatorcontrib>Attux, Romis</creatorcontrib><creatorcontrib>Von Zuben, Fernando J.</creatorcontrib><title>A multi-Gaussian component EDA with restarting applied to direction of arrival tracking</title><title>2013 IEEE Congress on Evolutionary Computation</title><addtitle>CEC</addtitle><description>This paper analyzes the application of a multi-population Gaussian-based estimation of distribution algorithm equipped with a restarting strategy and mutation, named MGcEDA, to the problem of estimating the Direction of Arrival (DOA) of time-varying plane waves impinging on a uniform linear array of sensors. This problem requires the minimization of a dynamic cost function which is non-linear, non-quadratic, multimodal and variant with respect to the signal-to-noise ratio. Experiments showed that MGcEDA was able to quickly respond to changes in the source features in scenarios with different levels of noise and number of signals. Moreover, MGcEDA outperforms a previously proposed approach in all considered experiments in terms of well known performance measures.</description><subject>Covariance matrices</subject><subject>Direction of Arrival estimation</subject><subject>Estimation</subject><subject>Estimation of distribution algorithm</subject><subject>Heuristic algorithms</subject><subject>Optimization in dynamic environments</subject><subject>Sensors</subject><subject>Sociology</subject><issn>1089-778X</issn><issn>1941-0026</issn><isbn>1479904538</isbn><isbn>9781479904532</isbn><isbn>147990452X</isbn><isbn>9781479904525</isbn><isbn>9781479904549</isbn><isbn>1479904546</isbn><isbn>9781479904518</isbn><isbn>1479904511</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2013</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNpFkM1KAzEYReMfWGv3gpu8wNQvk8lkshzGsQoFN4rdlTT5otH5I5NafHsHLLi6cM_lLC4hNwyWjIG6q-pqmQLjy1wIKTN5Qq5YJpWCTKSbUzJjKmMJQJqf_QNenE8ACpVIWWwuyWIcPwFg8kkAPiNvJW33TfTJSu_H0euOmr4d-g67SOv7kh58_KABx6hD9N071cPQeLQ09tT6gCb6vqO9ozoE_60bGoM2X9Pwmlw43Yy4OOacvD7UL9Vjsn5ePVXlOvFMiphYyS1a5EYAGO0EQ8uMBJZiLiB3hRVO5VPJc6v1zliJMkWXOpXtGFfO8jm5_fN6RNwOwbc6_GyPB_Ff4PRXIg</recordid><startdate>201306</startdate><enddate>201306</enddate><creator>Goncalves, Andre R.</creator><creator>Boccato, Levy</creator><creator>Attux, Romis</creator><creator>Von Zuben, Fernando J.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201306</creationdate><title>A multi-Gaussian component EDA with restarting applied to direction of arrival tracking</title><author>Goncalves, Andre R. ; Boccato, Levy ; Attux, Romis ; Von Zuben, Fernando J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-d73dede3c500caf51ed1c7012e6506f8d5f961ed36daabcd7e72ef2f94b139fd3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Covariance matrices</topic><topic>Direction of Arrival estimation</topic><topic>Estimation</topic><topic>Estimation of distribution algorithm</topic><topic>Heuristic algorithms</topic><topic>Optimization in dynamic environments</topic><topic>Sensors</topic><topic>Sociology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Goncalves, Andre R.</creatorcontrib><creatorcontrib>Boccato, Levy</creatorcontrib><creatorcontrib>Attux, Romis</creatorcontrib><creatorcontrib>Von Zuben, Fernando J.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library Online</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Goncalves, Andre R.</au><au>Boccato, Levy</au><au>Attux, Romis</au><au>Von Zuben, Fernando J.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A multi-Gaussian component EDA with restarting applied to direction of arrival tracking</atitle><btitle>2013 IEEE Congress on Evolutionary Computation</btitle><stitle>CEC</stitle><date>2013-06</date><risdate>2013</risdate><spage>1556</spage><epage>1563</epage><pages>1556-1563</pages><issn>1089-778X</issn><eissn>1941-0026</eissn><isbn>1479904538</isbn><isbn>9781479904532</isbn><eisbn>147990452X</eisbn><eisbn>9781479904525</eisbn><eisbn>9781479904549</eisbn><eisbn>1479904546</eisbn><eisbn>9781479904518</eisbn><eisbn>1479904511</eisbn><abstract>This paper analyzes the application of a multi-population Gaussian-based estimation of distribution algorithm equipped with a restarting strategy and mutation, named MGcEDA, to the problem of estimating the Direction of Arrival (DOA) of time-varying plane waves impinging on a uniform linear array of sensors. This problem requires the minimization of a dynamic cost function which is non-linear, non-quadratic, multimodal and variant with respect to the signal-to-noise ratio. Experiments showed that MGcEDA was able to quickly respond to changes in the source features in scenarios with different levels of noise and number of signals. Moreover, MGcEDA outperforms a previously proposed approach in all considered experiments in terms of well known performance measures.</abstract><pub>IEEE</pub><doi>10.1109/CEC.2013.6557747</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1089-778X |
ispartof | 2013 IEEE Congress on Evolutionary Computation, 2013, p.1556-1563 |
issn | 1089-778X 1941-0026 |
language | eng |
recordid | cdi_ieee_primary_6557747 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Covariance matrices Direction of Arrival estimation Estimation Estimation of distribution algorithm Heuristic algorithms Optimization in dynamic environments Sensors Sociology |
title | A multi-Gaussian component EDA with restarting applied to direction of arrival tracking |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T08%3A43%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20multi-Gaussian%20component%20EDA%20with%20restarting%20applied%20to%20direction%20of%20arrival%20tracking&rft.btitle=2013%20IEEE%20Congress%20on%20Evolutionary%20Computation&rft.au=Goncalves,%20Andre%20R.&rft.date=2013-06&rft.spage=1556&rft.epage=1563&rft.pages=1556-1563&rft.issn=1089-778X&rft.eissn=1941-0026&rft.isbn=1479904538&rft.isbn_list=9781479904532&rft_id=info:doi/10.1109/CEC.2013.6557747&rft.eisbn=147990452X&rft.eisbn_list=9781479904525&rft.eisbn_list=9781479904549&rft.eisbn_list=1479904546&rft.eisbn_list=9781479904518&rft.eisbn_list=1479904511&rft_dat=%3Cieee_6IE%3E6557747%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-d73dede3c500caf51ed1c7012e6506f8d5f961ed36daabcd7e72ef2f94b139fd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6557747&rfr_iscdi=true |