Loading…
Cooperative Group Search Optimization
Group Search Optimizer (GSO) is a population-based optimization approach inspired by animal searching behaviour and group living theory. Although competition among population members may improve their performance, greater improvements could be achieved through cooperation. In this paper, a new algor...
Saved in:
Main Authors: | , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 3306 |
container_issue | |
container_start_page | 3299 |
container_title | |
container_volume | |
creator | Pacifico, L. D. S. Ludermir, T. B. |
description | Group Search Optimizer (GSO) is a population-based optimization approach inspired by animal searching behaviour and group living theory. Although competition among population members may improve their performance, greater improvements could be achieved through cooperation. In this paper, a new algorithm is presented, called Cooperative Group Search Optimizer (CGSO), based on divide-and-conquer paradigm, employing cooperative behaviour among multiple GSO groups to improve the performance of standard GSO. Nine benchmark functions are used to evaluate the performance of the proposed technique. Experimental results show that the CGSO approach is able to achieve better results than standard GSO in most of the tested problems. |
doi_str_mv | 10.1109/CEC.2013.6557974 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_6557974</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6557974</ieee_id><sourcerecordid>6557974</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-69a6b49c592d9b43599ca464ef6508d2fbe0f7511a585f9959dae3dbaf2041f83</originalsourceid><addsrcrecordid>eNpFz89LwzAYxvH4C5xzd8FLLx5b3zfJm-Q9SplTGOygwm4jbROMOFvaKuhfb8GBp-fwgS88QlwhFIjAt-WyLCSgKgyRZauPxAVqywya5PZYzJA15gDSnPyDcqcTgOPcWrc9F4theAOAqWcB1EzclG3bhd6P6Stkq7797LKn4Pv6Ndt0Y9qnn0naj0txFv37EBaHnYuX--Vz-ZCvN6vH8m6dJ7Q05oa9qTTXxLLhSitirr02OkRD4BoZqwDREqInR5GZuPFBNZWPEjRGp-bi-q-bQgi7rk9733_vDnfVLy64Q6M</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Cooperative Group Search Optimization</title><source>IEEE Xplore All Conference Series</source><creator>Pacifico, L. D. S. ; Ludermir, T. B.</creator><creatorcontrib>Pacifico, L. D. S. ; Ludermir, T. B.</creatorcontrib><description>Group Search Optimizer (GSO) is a population-based optimization approach inspired by animal searching behaviour and group living theory. Although competition among population members may improve their performance, greater improvements could be achieved through cooperation. In this paper, a new algorithm is presented, called Cooperative Group Search Optimizer (CGSO), based on divide-and-conquer paradigm, employing cooperative behaviour among multiple GSO groups to improve the performance of standard GSO. Nine benchmark functions are used to evaluate the performance of the proposed technique. Experimental results show that the CGSO approach is able to achieve better results than standard GSO in most of the tested problems.</description><identifier>ISSN: 1089-778X</identifier><identifier>ISBN: 1479904538</identifier><identifier>ISBN: 9781479904532</identifier><identifier>EISSN: 1941-0026</identifier><identifier>EISBN: 147990452X</identifier><identifier>EISBN: 9781479904525</identifier><identifier>EISBN: 9781479904549</identifier><identifier>EISBN: 1479904546</identifier><identifier>EISBN: 9781479904518</identifier><identifier>EISBN: 1479904511</identifier><identifier>DOI: 10.1109/CEC.2013.6557974</identifier><language>eng</language><publisher>IEEE</publisher><subject>Animals ; Cooperative learning ; Evolutionary computing ; Genetic algorithms ; Group search optimization ; Measurement ; Optimization ; Sociology ; Statistics</subject><ispartof>2013 IEEE Congress on Evolutionary Computation, 2013, p.3299-3306</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6557974$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2056,27923,54553,54794,54918,54930</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6557974$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Pacifico, L. D. S.</creatorcontrib><creatorcontrib>Ludermir, T. B.</creatorcontrib><title>Cooperative Group Search Optimization</title><title>2013 IEEE Congress on Evolutionary Computation</title><addtitle>CEC</addtitle><description>Group Search Optimizer (GSO) is a population-based optimization approach inspired by animal searching behaviour and group living theory. Although competition among population members may improve their performance, greater improvements could be achieved through cooperation. In this paper, a new algorithm is presented, called Cooperative Group Search Optimizer (CGSO), based on divide-and-conquer paradigm, employing cooperative behaviour among multiple GSO groups to improve the performance of standard GSO. Nine benchmark functions are used to evaluate the performance of the proposed technique. Experimental results show that the CGSO approach is able to achieve better results than standard GSO in most of the tested problems.</description><subject>Animals</subject><subject>Cooperative learning</subject><subject>Evolutionary computing</subject><subject>Genetic algorithms</subject><subject>Group search optimization</subject><subject>Measurement</subject><subject>Optimization</subject><subject>Sociology</subject><subject>Statistics</subject><issn>1089-778X</issn><issn>1941-0026</issn><isbn>1479904538</isbn><isbn>9781479904532</isbn><isbn>147990452X</isbn><isbn>9781479904525</isbn><isbn>9781479904549</isbn><isbn>1479904546</isbn><isbn>9781479904518</isbn><isbn>1479904511</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2013</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNpFz89LwzAYxvH4C5xzd8FLLx5b3zfJm-Q9SplTGOygwm4jbROMOFvaKuhfb8GBp-fwgS88QlwhFIjAt-WyLCSgKgyRZauPxAVqywya5PZYzJA15gDSnPyDcqcTgOPcWrc9F4theAOAqWcB1EzclG3bhd6P6Stkq7797LKn4Pv6Ndt0Y9qnn0naj0txFv37EBaHnYuX--Vz-ZCvN6vH8m6dJ7Q05oa9qTTXxLLhSitirr02OkRD4BoZqwDREqInR5GZuPFBNZWPEjRGp-bi-q-bQgi7rk9733_vDnfVLy64Q6M</recordid><startdate>201306</startdate><enddate>201306</enddate><creator>Pacifico, L. D. S.</creator><creator>Ludermir, T. B.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201306</creationdate><title>Cooperative Group Search Optimization</title><author>Pacifico, L. D. S. ; Ludermir, T. B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-69a6b49c592d9b43599ca464ef6508d2fbe0f7511a585f9959dae3dbaf2041f83</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Animals</topic><topic>Cooperative learning</topic><topic>Evolutionary computing</topic><topic>Genetic algorithms</topic><topic>Group search optimization</topic><topic>Measurement</topic><topic>Optimization</topic><topic>Sociology</topic><topic>Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pacifico, L. D. S.</creatorcontrib><creatorcontrib>Ludermir, T. B.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Pacifico, L. D. S.</au><au>Ludermir, T. B.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Cooperative Group Search Optimization</atitle><btitle>2013 IEEE Congress on Evolutionary Computation</btitle><stitle>CEC</stitle><date>2013-06</date><risdate>2013</risdate><spage>3299</spage><epage>3306</epage><pages>3299-3306</pages><issn>1089-778X</issn><eissn>1941-0026</eissn><isbn>1479904538</isbn><isbn>9781479904532</isbn><eisbn>147990452X</eisbn><eisbn>9781479904525</eisbn><eisbn>9781479904549</eisbn><eisbn>1479904546</eisbn><eisbn>9781479904518</eisbn><eisbn>1479904511</eisbn><abstract>Group Search Optimizer (GSO) is a population-based optimization approach inspired by animal searching behaviour and group living theory. Although competition among population members may improve their performance, greater improvements could be achieved through cooperation. In this paper, a new algorithm is presented, called Cooperative Group Search Optimizer (CGSO), based on divide-and-conquer paradigm, employing cooperative behaviour among multiple GSO groups to improve the performance of standard GSO. Nine benchmark functions are used to evaluate the performance of the proposed technique. Experimental results show that the CGSO approach is able to achieve better results than standard GSO in most of the tested problems.</abstract><pub>IEEE</pub><doi>10.1109/CEC.2013.6557974</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1089-778X |
ispartof | 2013 IEEE Congress on Evolutionary Computation, 2013, p.3299-3306 |
issn | 1089-778X 1941-0026 |
language | eng |
recordid | cdi_ieee_primary_6557974 |
source | IEEE Xplore All Conference Series |
subjects | Animals Cooperative learning Evolutionary computing Genetic algorithms Group search optimization Measurement Optimization Sociology Statistics |
title | Cooperative Group Search Optimization |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T12%3A56%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Cooperative%20Group%20Search%20Optimization&rft.btitle=2013%20IEEE%20Congress%20on%20Evolutionary%20Computation&rft.au=Pacifico,%20L.%20D.%20S.&rft.date=2013-06&rft.spage=3299&rft.epage=3306&rft.pages=3299-3306&rft.issn=1089-778X&rft.eissn=1941-0026&rft.isbn=1479904538&rft.isbn_list=9781479904532&rft_id=info:doi/10.1109/CEC.2013.6557974&rft.eisbn=147990452X&rft.eisbn_list=9781479904525&rft.eisbn_list=9781479904549&rft.eisbn_list=1479904546&rft.eisbn_list=9781479904518&rft.eisbn_list=1479904511&rft_dat=%3Cieee_CHZPO%3E6557974%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-69a6b49c592d9b43599ca464ef6508d2fbe0f7511a585f9959dae3dbaf2041f83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6557974&rfr_iscdi=true |