Loading…
A primary-backup channel approach to dependable real-time communication in multihop networks
Many applications require communication services with guaranteed timeliness and fault tolerance at an acceptable level of overhead. We present a scheme for restoring real-time channels, each with guaranteed timeliness, from component failures in multihop networks. To ensure fast/guaranteed recovery,...
Saved in:
Published in: | IEEE transactions on computers 1998-01, Vol.47 (1), p.46-61 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Many applications require communication services with guaranteed timeliness and fault tolerance at an acceptable level of overhead. We present a scheme for restoring real-time channels, each with guaranteed timeliness, from component failures in multihop networks. To ensure fast/guaranteed recovery, backup channels are set up a priori, in addition to each primary channel. That is, a dependable real-time connection consists of a primary channel and one or more backup channels. If a primary channel fails, one of its backup channels is activated to become a new primary channel. We propose a protocol which provides an Integrated solution for dependable real-time communication in multihop networks. We also present a resource sharing method that significantly reduces the overhead of backup channels. Good coverage (in recovering from failures) is shown to be achievable with about 30 percent degradation in network utilization under a reasonable failure condition. Moreover, the fault tolerance level of each dependable connection can be controlled, independently of other connections, to reflect its criticality. |
---|---|
ISSN: | 0018-9340 1557-9956 |
DOI: | 10.1109/12.656080 |