Loading…

Human behavior recognition based on fractal conditional random field

In order to meet the demand of visual behavior recognition, we introduce Fractal Conditional Random Field (FCRF) model. FCRF model has improved Latent-Dynamic Conditional Random Field (LDCRF), and proposed the concept of fractal labels that define the integrity and directionality of human behavior....

Full description

Saved in:
Bibliographic Details
Main Authors: Lv, Zhuowen, Wang, Kejun
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 1510
container_issue
container_start_page 1506
container_title
container_volume
creator Lv, Zhuowen
Wang, Kejun
description In order to meet the demand of visual behavior recognition, we introduce Fractal Conditional Random Field (FCRF) model. FCRF model has improved Latent-Dynamic Conditional Random Field (LDCRF), and proposed the concept of fractal labels that define the integrity and directionality of human behavior. FCRF model overcomes real-time issues of the Hidden Conditional Random Field (HCRF) and the problem of label bias when the behavior transform. The experimental results show that the algorithm proposed in this paper has better recognition performance than Conditional Random Field (CRF), HCRF and LDCRF.
doi_str_mv 10.1109/CCDC.2013.6561166
format conference_proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6561166</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6561166</ieee_id><sourcerecordid>6561166</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-f2a6f21daec8ee0771d1b16d45982b872018f9b2787990953de430479db761653</originalsourceid><addsrcrecordid>eNpVkMtKxEAURNsXOIz5AHGTH0js2--7lIw6woAbXQ-d9I225CGdKPj3Bh0EV1XUgYIqxi6BlwAcr6tqU5WCgyyNNgDGHLEMrQNlrNRaCnHMVoDKFaiUPfnHJJ7-MYnnLJumN875Umsc5yu22X70fshrevWfcUx5omZ8GeIcxyX0E4V8MW3yzey7vBmH8IMWn_wQxj5vI3Xhgp21vpsoO-iaPd_dPlXbYvd4_1Dd7IoIVs9FK7xpBQRPjSPi1kKAGkxQGp2onV0WuhZrYZ1F5KhlICW5shhqa8BouWZXv72RiPbvKfY-fe0Pn8hvMalPig</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Human behavior recognition based on fractal conditional random field</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Lv, Zhuowen ; Wang, Kejun</creator><creatorcontrib>Lv, Zhuowen ; Wang, Kejun</creatorcontrib><description>In order to meet the demand of visual behavior recognition, we introduce Fractal Conditional Random Field (FCRF) model. FCRF model has improved Latent-Dynamic Conditional Random Field (LDCRF), and proposed the concept of fractal labels that define the integrity and directionality of human behavior. FCRF model overcomes real-time issues of the Hidden Conditional Random Field (HCRF) and the problem of label bias when the behavior transform. The experimental results show that the algorithm proposed in this paper has better recognition performance than Conditional Random Field (CRF), HCRF and LDCRF.</description><identifier>ISSN: 1948-9439</identifier><identifier>ISBN: 9781467355339</identifier><identifier>ISBN: 146735533X</identifier><identifier>EISSN: 1948-9447</identifier><identifier>EISBN: 9781467355322</identifier><identifier>EISBN: 9781467355346</identifier><identifier>EISBN: 1467355321</identifier><identifier>EISBN: 1467355348</identifier><identifier>DOI: 10.1109/CCDC.2013.6561166</identifier><language>eng</language><publisher>IEEE</publisher><subject>Adaptation models ; behavior recognition ; CRF ; FCRF ; Fractals ; HCRF ; Hidden Markov models ; LDCRF ; Mathematical model ; Testing ; Training ; Video sequences</subject><ispartof>2013 25th Chinese Control and Decision Conference (CCDC), 2013, p.1506-1510</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6561166$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54555,54920,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6561166$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Lv, Zhuowen</creatorcontrib><creatorcontrib>Wang, Kejun</creatorcontrib><title>Human behavior recognition based on fractal conditional random field</title><title>2013 25th Chinese Control and Decision Conference (CCDC)</title><addtitle>CCDC</addtitle><description>In order to meet the demand of visual behavior recognition, we introduce Fractal Conditional Random Field (FCRF) model. FCRF model has improved Latent-Dynamic Conditional Random Field (LDCRF), and proposed the concept of fractal labels that define the integrity and directionality of human behavior. FCRF model overcomes real-time issues of the Hidden Conditional Random Field (HCRF) and the problem of label bias when the behavior transform. The experimental results show that the algorithm proposed in this paper has better recognition performance than Conditional Random Field (CRF), HCRF and LDCRF.</description><subject>Adaptation models</subject><subject>behavior recognition</subject><subject>CRF</subject><subject>FCRF</subject><subject>Fractals</subject><subject>HCRF</subject><subject>Hidden Markov models</subject><subject>LDCRF</subject><subject>Mathematical model</subject><subject>Testing</subject><subject>Training</subject><subject>Video sequences</subject><issn>1948-9439</issn><issn>1948-9447</issn><isbn>9781467355339</isbn><isbn>146735533X</isbn><isbn>9781467355322</isbn><isbn>9781467355346</isbn><isbn>1467355321</isbn><isbn>1467355348</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2013</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNpVkMtKxEAURNsXOIz5AHGTH0js2--7lIw6woAbXQ-d9I225CGdKPj3Bh0EV1XUgYIqxi6BlwAcr6tqU5WCgyyNNgDGHLEMrQNlrNRaCnHMVoDKFaiUPfnHJJ7-MYnnLJumN875Umsc5yu22X70fshrevWfcUx5omZ8GeIcxyX0E4V8MW3yzey7vBmH8IMWn_wQxj5vI3Xhgp21vpsoO-iaPd_dPlXbYvd4_1Dd7IoIVs9FK7xpBQRPjSPi1kKAGkxQGp2onV0WuhZrYZ1F5KhlICW5shhqa8BouWZXv72RiPbvKfY-fe0Pn8hvMalPig</recordid><startdate>201305</startdate><enddate>201305</enddate><creator>Lv, Zhuowen</creator><creator>Wang, Kejun</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201305</creationdate><title>Human behavior recognition based on fractal conditional random field</title><author>Lv, Zhuowen ; Wang, Kejun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-f2a6f21daec8ee0771d1b16d45982b872018f9b2787990953de430479db761653</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Adaptation models</topic><topic>behavior recognition</topic><topic>CRF</topic><topic>FCRF</topic><topic>Fractals</topic><topic>HCRF</topic><topic>Hidden Markov models</topic><topic>LDCRF</topic><topic>Mathematical model</topic><topic>Testing</topic><topic>Training</topic><topic>Video sequences</topic><toplevel>online_resources</toplevel><creatorcontrib>Lv, Zhuowen</creatorcontrib><creatorcontrib>Wang, Kejun</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Lv, Zhuowen</au><au>Wang, Kejun</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Human behavior recognition based on fractal conditional random field</atitle><btitle>2013 25th Chinese Control and Decision Conference (CCDC)</btitle><stitle>CCDC</stitle><date>2013-05</date><risdate>2013</risdate><spage>1506</spage><epage>1510</epage><pages>1506-1510</pages><issn>1948-9439</issn><eissn>1948-9447</eissn><isbn>9781467355339</isbn><isbn>146735533X</isbn><eisbn>9781467355322</eisbn><eisbn>9781467355346</eisbn><eisbn>1467355321</eisbn><eisbn>1467355348</eisbn><abstract>In order to meet the demand of visual behavior recognition, we introduce Fractal Conditional Random Field (FCRF) model. FCRF model has improved Latent-Dynamic Conditional Random Field (LDCRF), and proposed the concept of fractal labels that define the integrity and directionality of human behavior. FCRF model overcomes real-time issues of the Hidden Conditional Random Field (HCRF) and the problem of label bias when the behavior transform. The experimental results show that the algorithm proposed in this paper has better recognition performance than Conditional Random Field (CRF), HCRF and LDCRF.</abstract><pub>IEEE</pub><doi>10.1109/CCDC.2013.6561166</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1948-9439
ispartof 2013 25th Chinese Control and Decision Conference (CCDC), 2013, p.1506-1510
issn 1948-9439
1948-9447
language eng
recordid cdi_ieee_primary_6561166
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Adaptation models
behavior recognition
CRF
FCRF
Fractals
HCRF
Hidden Markov models
LDCRF
Mathematical model
Testing
Training
Video sequences
title Human behavior recognition based on fractal conditional random field
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T08%3A05%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Human%20behavior%20recognition%20based%20on%20fractal%20conditional%20random%20field&rft.btitle=2013%2025th%20Chinese%20Control%20and%20Decision%20Conference%20(CCDC)&rft.au=Lv,%20Zhuowen&rft.date=2013-05&rft.spage=1506&rft.epage=1510&rft.pages=1506-1510&rft.issn=1948-9439&rft.eissn=1948-9447&rft.isbn=9781467355339&rft.isbn_list=146735533X&rft_id=info:doi/10.1109/CCDC.2013.6561166&rft.eisbn=9781467355322&rft.eisbn_list=9781467355346&rft.eisbn_list=1467355321&rft.eisbn_list=1467355348&rft_dat=%3Cieee_6IE%3E6561166%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-f2a6f21daec8ee0771d1b16d45982b872018f9b2787990953de430479db761653%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6561166&rfr_iscdi=true