Loading…
Human behavior recognition based on fractal conditional random field
In order to meet the demand of visual behavior recognition, we introduce Fractal Conditional Random Field (FCRF) model. FCRF model has improved Latent-Dynamic Conditional Random Field (LDCRF), and proposed the concept of fractal labels that define the integrity and directionality of human behavior....
Saved in:
Main Authors: | , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 1510 |
container_issue | |
container_start_page | 1506 |
container_title | |
container_volume | |
creator | Lv, Zhuowen Wang, Kejun |
description | In order to meet the demand of visual behavior recognition, we introduce Fractal Conditional Random Field (FCRF) model. FCRF model has improved Latent-Dynamic Conditional Random Field (LDCRF), and proposed the concept of fractal labels that define the integrity and directionality of human behavior. FCRF model overcomes real-time issues of the Hidden Conditional Random Field (HCRF) and the problem of label bias when the behavior transform. The experimental results show that the algorithm proposed in this paper has better recognition performance than Conditional Random Field (CRF), HCRF and LDCRF. |
doi_str_mv | 10.1109/CCDC.2013.6561166 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6561166</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6561166</ieee_id><sourcerecordid>6561166</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-f2a6f21daec8ee0771d1b16d45982b872018f9b2787990953de430479db761653</originalsourceid><addsrcrecordid>eNpVkMtKxEAURNsXOIz5AHGTH0js2--7lIw6woAbXQ-d9I225CGdKPj3Bh0EV1XUgYIqxi6BlwAcr6tqU5WCgyyNNgDGHLEMrQNlrNRaCnHMVoDKFaiUPfnHJJ7-MYnnLJumN875Umsc5yu22X70fshrevWfcUx5omZ8GeIcxyX0E4V8MW3yzey7vBmH8IMWn_wQxj5vI3Xhgp21vpsoO-iaPd_dPlXbYvd4_1Dd7IoIVs9FK7xpBQRPjSPi1kKAGkxQGp2onV0WuhZrYZ1F5KhlICW5shhqa8BouWZXv72RiPbvKfY-fe0Pn8hvMalPig</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Human behavior recognition based on fractal conditional random field</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Lv, Zhuowen ; Wang, Kejun</creator><creatorcontrib>Lv, Zhuowen ; Wang, Kejun</creatorcontrib><description>In order to meet the demand of visual behavior recognition, we introduce Fractal Conditional Random Field (FCRF) model. FCRF model has improved Latent-Dynamic Conditional Random Field (LDCRF), and proposed the concept of fractal labels that define the integrity and directionality of human behavior. FCRF model overcomes real-time issues of the Hidden Conditional Random Field (HCRF) and the problem of label bias when the behavior transform. The experimental results show that the algorithm proposed in this paper has better recognition performance than Conditional Random Field (CRF), HCRF and LDCRF.</description><identifier>ISSN: 1948-9439</identifier><identifier>ISBN: 9781467355339</identifier><identifier>ISBN: 146735533X</identifier><identifier>EISSN: 1948-9447</identifier><identifier>EISBN: 9781467355322</identifier><identifier>EISBN: 9781467355346</identifier><identifier>EISBN: 1467355321</identifier><identifier>EISBN: 1467355348</identifier><identifier>DOI: 10.1109/CCDC.2013.6561166</identifier><language>eng</language><publisher>IEEE</publisher><subject>Adaptation models ; behavior recognition ; CRF ; FCRF ; Fractals ; HCRF ; Hidden Markov models ; LDCRF ; Mathematical model ; Testing ; Training ; Video sequences</subject><ispartof>2013 25th Chinese Control and Decision Conference (CCDC), 2013, p.1506-1510</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6561166$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54555,54920,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6561166$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Lv, Zhuowen</creatorcontrib><creatorcontrib>Wang, Kejun</creatorcontrib><title>Human behavior recognition based on fractal conditional random field</title><title>2013 25th Chinese Control and Decision Conference (CCDC)</title><addtitle>CCDC</addtitle><description>In order to meet the demand of visual behavior recognition, we introduce Fractal Conditional Random Field (FCRF) model. FCRF model has improved Latent-Dynamic Conditional Random Field (LDCRF), and proposed the concept of fractal labels that define the integrity and directionality of human behavior. FCRF model overcomes real-time issues of the Hidden Conditional Random Field (HCRF) and the problem of label bias when the behavior transform. The experimental results show that the algorithm proposed in this paper has better recognition performance than Conditional Random Field (CRF), HCRF and LDCRF.</description><subject>Adaptation models</subject><subject>behavior recognition</subject><subject>CRF</subject><subject>FCRF</subject><subject>Fractals</subject><subject>HCRF</subject><subject>Hidden Markov models</subject><subject>LDCRF</subject><subject>Mathematical model</subject><subject>Testing</subject><subject>Training</subject><subject>Video sequences</subject><issn>1948-9439</issn><issn>1948-9447</issn><isbn>9781467355339</isbn><isbn>146735533X</isbn><isbn>9781467355322</isbn><isbn>9781467355346</isbn><isbn>1467355321</isbn><isbn>1467355348</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2013</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNpVkMtKxEAURNsXOIz5AHGTH0js2--7lIw6woAbXQ-d9I225CGdKPj3Bh0EV1XUgYIqxi6BlwAcr6tqU5WCgyyNNgDGHLEMrQNlrNRaCnHMVoDKFaiUPfnHJJ7-MYnnLJumN875Umsc5yu22X70fshrevWfcUx5omZ8GeIcxyX0E4V8MW3yzey7vBmH8IMWn_wQxj5vI3Xhgp21vpsoO-iaPd_dPlXbYvd4_1Dd7IoIVs9FK7xpBQRPjSPi1kKAGkxQGp2onV0WuhZrYZ1F5KhlICW5shhqa8BouWZXv72RiPbvKfY-fe0Pn8hvMalPig</recordid><startdate>201305</startdate><enddate>201305</enddate><creator>Lv, Zhuowen</creator><creator>Wang, Kejun</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201305</creationdate><title>Human behavior recognition based on fractal conditional random field</title><author>Lv, Zhuowen ; Wang, Kejun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-f2a6f21daec8ee0771d1b16d45982b872018f9b2787990953de430479db761653</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Adaptation models</topic><topic>behavior recognition</topic><topic>CRF</topic><topic>FCRF</topic><topic>Fractals</topic><topic>HCRF</topic><topic>Hidden Markov models</topic><topic>LDCRF</topic><topic>Mathematical model</topic><topic>Testing</topic><topic>Training</topic><topic>Video sequences</topic><toplevel>online_resources</toplevel><creatorcontrib>Lv, Zhuowen</creatorcontrib><creatorcontrib>Wang, Kejun</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Lv, Zhuowen</au><au>Wang, Kejun</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Human behavior recognition based on fractal conditional random field</atitle><btitle>2013 25th Chinese Control and Decision Conference (CCDC)</btitle><stitle>CCDC</stitle><date>2013-05</date><risdate>2013</risdate><spage>1506</spage><epage>1510</epage><pages>1506-1510</pages><issn>1948-9439</issn><eissn>1948-9447</eissn><isbn>9781467355339</isbn><isbn>146735533X</isbn><eisbn>9781467355322</eisbn><eisbn>9781467355346</eisbn><eisbn>1467355321</eisbn><eisbn>1467355348</eisbn><abstract>In order to meet the demand of visual behavior recognition, we introduce Fractal Conditional Random Field (FCRF) model. FCRF model has improved Latent-Dynamic Conditional Random Field (LDCRF), and proposed the concept of fractal labels that define the integrity and directionality of human behavior. FCRF model overcomes real-time issues of the Hidden Conditional Random Field (HCRF) and the problem of label bias when the behavior transform. The experimental results show that the algorithm proposed in this paper has better recognition performance than Conditional Random Field (CRF), HCRF and LDCRF.</abstract><pub>IEEE</pub><doi>10.1109/CCDC.2013.6561166</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1948-9439 |
ispartof | 2013 25th Chinese Control and Decision Conference (CCDC), 2013, p.1506-1510 |
issn | 1948-9439 1948-9447 |
language | eng |
recordid | cdi_ieee_primary_6561166 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Adaptation models behavior recognition CRF FCRF Fractals HCRF Hidden Markov models LDCRF Mathematical model Testing Training Video sequences |
title | Human behavior recognition based on fractal conditional random field |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T08%3A05%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Human%20behavior%20recognition%20based%20on%20fractal%20conditional%20random%20field&rft.btitle=2013%2025th%20Chinese%20Control%20and%20Decision%20Conference%20(CCDC)&rft.au=Lv,%20Zhuowen&rft.date=2013-05&rft.spage=1506&rft.epage=1510&rft.pages=1506-1510&rft.issn=1948-9439&rft.eissn=1948-9447&rft.isbn=9781467355339&rft.isbn_list=146735533X&rft_id=info:doi/10.1109/CCDC.2013.6561166&rft.eisbn=9781467355322&rft.eisbn_list=9781467355346&rft.eisbn_list=1467355321&rft.eisbn_list=1467355348&rft_dat=%3Cieee_6IE%3E6561166%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-f2a6f21daec8ee0771d1b16d45982b872018f9b2787990953de430479db761653%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6561166&rfr_iscdi=true |