Loading…

Efficient implementation of a real-time dynamic synthetic aperture beamformer

Synthetic aperture (SA) imaging techniques can provide high resolution over imaging depths, unlike a conventional receive focusing methods (CRDF) that suffered from a considerable degradation in resolution far from a transmit focal depth. However, it is difficult to incorporate SA on modern medical...

Full description

Saved in:
Bibliographic Details
Main Authors: Jongho Park, Jongpil Lee, Do-Hyung Kim, Minsoo Kim, Jin Ho Chang, Tai-kyong Song, Yangmo Yoo
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 2253
container_issue
container_start_page 2250
container_title
container_volume
creator Jongho Park
Jongpil Lee
Do-Hyung Kim
Minsoo Kim
Jin Ho Chang
Tai-kyong Song
Yangmo Yoo
description Synthetic aperture (SA) imaging techniques can provide high resolution over imaging depths, unlike a conventional receive focusing methods (CRDF) that suffered from a considerable degradation in resolution far from a transmit focal depth. However, it is difficult to incorporate SA on modern medical ultrasound imaging systems due to its high computational complexity. In this paper, the efficient implementation of a real-time dynamic SA beamformer where the number of synthetic scanlines is dynamically adjusted based on transmit beam pattern is presented. In the developed dynamic SA imaging system, 128-channel radio-frequency (RF) data are fed into four field programmable gate array (FPGAs, Virtex-5 LX330, Xilinx, USA) chips and 16 synthetic scanlines can be combined. Each FPGA operates at 160 MHz to produce 16 synthetic scanlines in parallel by a time sharing method. The partial synthetic scanline data from each module are sent to an accumulator to combine and stored in an internal buffer. This SA beamforming operation is repeated with RF data acquired from each excitation, and the final 16 synthetic scanline data are transferred to a personal computer (PC) for backend processing and image display. The developed SA beamformer with 16 synthetic beams is implemented by 51% of slice registers, 43% look-up-tables (LUTs), 71% of random access memories (RAMs) and 50% of digital signal processing (DSP) blocks in each FPGA.
doi_str_mv 10.1109/ULTSYM.2012.0562
format conference_proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6562320</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6562320</ieee_id><sourcerecordid>6562320</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-b913013fa173a2f32e32e849a246538f7f9ff3cb055adf8291fd41ca4a679ab63</originalsourceid><addsrcrecordid>eNpVkE1LAzEURSMqWGr3gpv8ganvJZNkspRSP6DFhe3CVXkzfcFIMy2ZuOi_d0A3woV7zuYurhB3CHNE8A_b1eb9Yz1XgGoOxqoLMfOuwdo6XRsL9vKfo74SEwSDFSC6GzEbhi-AkcGBsxOxXoYQu8h9kTGdDpxGohKPvTwGSTIzHaoSE8v9uacUOzmc-_LJZSQ6cS7fmWXLlMIxJ8634jrQYeDZX0_F9mm5WbxUq7fn18XjqoroTKlajxpQB0KnSQWteExTe1K1NboJLvgQdNeCMbQPjfIY9jV2VJN1nlqrp-L-dzcy8-6UY6J83tnxDa1A_wCm7lJS</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Efficient implementation of a real-time dynamic synthetic aperture beamformer</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Jongho Park ; Jongpil Lee ; Do-Hyung Kim ; Minsoo Kim ; Jin Ho Chang ; Tai-kyong Song ; Yangmo Yoo</creator><creatorcontrib>Jongho Park ; Jongpil Lee ; Do-Hyung Kim ; Minsoo Kim ; Jin Ho Chang ; Tai-kyong Song ; Yangmo Yoo</creatorcontrib><description>Synthetic aperture (SA) imaging techniques can provide high resolution over imaging depths, unlike a conventional receive focusing methods (CRDF) that suffered from a considerable degradation in resolution far from a transmit focal depth. However, it is difficult to incorporate SA on modern medical ultrasound imaging systems due to its high computational complexity. In this paper, the efficient implementation of a real-time dynamic SA beamformer where the number of synthetic scanlines is dynamically adjusted based on transmit beam pattern is presented. In the developed dynamic SA imaging system, 128-channel radio-frequency (RF) data are fed into four field programmable gate array (FPGAs, Virtex-5 LX330, Xilinx, USA) chips and 16 synthetic scanlines can be combined. Each FPGA operates at 160 MHz to produce 16 synthetic scanlines in parallel by a time sharing method. The partial synthetic scanline data from each module are sent to an accumulator to combine and stored in an internal buffer. This SA beamforming operation is repeated with RF data acquired from each excitation, and the final 16 synthetic scanline data are transferred to a personal computer (PC) for backend processing and image display. The developed SA beamformer with 16 synthetic beams is implemented by 51% of slice registers, 43% look-up-tables (LUTs), 71% of random access memories (RAMs) and 50% of digital signal processing (DSP) blocks in each FPGA.</description><identifier>ISSN: 1051-0117</identifier><identifier>ISBN: 9781467345613</identifier><identifier>ISBN: 146734561X</identifier><identifier>EISBN: 9781467345606</identifier><identifier>EISBN: 9781467345620</identifier><identifier>EISBN: 1467345628</identifier><identifier>EISBN: 1467345601</identifier><identifier>DOI: 10.1109/ULTSYM.2012.0562</identifier><language>eng</language><publisher>IEEE</publisher><subject>Arrays ; Delays ; field programmable gate array ; Field programmable gate arrays ; Image resolution ; Imaging ; Radio frequency ; real-time ; Synthetic aperture ; Ultrasonic imaging</subject><ispartof>2012 IEEE International Ultrasonics Symposium, 2012, p.2250-2253</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6562320$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6562320$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Jongho Park</creatorcontrib><creatorcontrib>Jongpil Lee</creatorcontrib><creatorcontrib>Do-Hyung Kim</creatorcontrib><creatorcontrib>Minsoo Kim</creatorcontrib><creatorcontrib>Jin Ho Chang</creatorcontrib><creatorcontrib>Tai-kyong Song</creatorcontrib><creatorcontrib>Yangmo Yoo</creatorcontrib><title>Efficient implementation of a real-time dynamic synthetic aperture beamformer</title><title>2012 IEEE International Ultrasonics Symposium</title><addtitle>ULTSYM</addtitle><description>Synthetic aperture (SA) imaging techniques can provide high resolution over imaging depths, unlike a conventional receive focusing methods (CRDF) that suffered from a considerable degradation in resolution far from a transmit focal depth. However, it is difficult to incorporate SA on modern medical ultrasound imaging systems due to its high computational complexity. In this paper, the efficient implementation of a real-time dynamic SA beamformer where the number of synthetic scanlines is dynamically adjusted based on transmit beam pattern is presented. In the developed dynamic SA imaging system, 128-channel radio-frequency (RF) data are fed into four field programmable gate array (FPGAs, Virtex-5 LX330, Xilinx, USA) chips and 16 synthetic scanlines can be combined. Each FPGA operates at 160 MHz to produce 16 synthetic scanlines in parallel by a time sharing method. The partial synthetic scanline data from each module are sent to an accumulator to combine and stored in an internal buffer. This SA beamforming operation is repeated with RF data acquired from each excitation, and the final 16 synthetic scanline data are transferred to a personal computer (PC) for backend processing and image display. The developed SA beamformer with 16 synthetic beams is implemented by 51% of slice registers, 43% look-up-tables (LUTs), 71% of random access memories (RAMs) and 50% of digital signal processing (DSP) blocks in each FPGA.</description><subject>Arrays</subject><subject>Delays</subject><subject>field programmable gate array</subject><subject>Field programmable gate arrays</subject><subject>Image resolution</subject><subject>Imaging</subject><subject>Radio frequency</subject><subject>real-time</subject><subject>Synthetic aperture</subject><subject>Ultrasonic imaging</subject><issn>1051-0117</issn><isbn>9781467345613</isbn><isbn>146734561X</isbn><isbn>9781467345606</isbn><isbn>9781467345620</isbn><isbn>1467345628</isbn><isbn>1467345601</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNpVkE1LAzEURSMqWGr3gpv8ganvJZNkspRSP6DFhe3CVXkzfcFIMy2ZuOi_d0A3woV7zuYurhB3CHNE8A_b1eb9Yz1XgGoOxqoLMfOuwdo6XRsL9vKfo74SEwSDFSC6GzEbhi-AkcGBsxOxXoYQu8h9kTGdDpxGohKPvTwGSTIzHaoSE8v9uacUOzmc-_LJZSQ6cS7fmWXLlMIxJ8634jrQYeDZX0_F9mm5WbxUq7fn18XjqoroTKlajxpQB0KnSQWteExTe1K1NboJLvgQdNeCMbQPjfIY9jV2VJN1nlqrp-L-dzcy8-6UY6J83tnxDa1A_wCm7lJS</recordid><startdate>201210</startdate><enddate>201210</enddate><creator>Jongho Park</creator><creator>Jongpil Lee</creator><creator>Do-Hyung Kim</creator><creator>Minsoo Kim</creator><creator>Jin Ho Chang</creator><creator>Tai-kyong Song</creator><creator>Yangmo Yoo</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201210</creationdate><title>Efficient implementation of a real-time dynamic synthetic aperture beamformer</title><author>Jongho Park ; Jongpil Lee ; Do-Hyung Kim ; Minsoo Kim ; Jin Ho Chang ; Tai-kyong Song ; Yangmo Yoo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-b913013fa173a2f32e32e849a246538f7f9ff3cb055adf8291fd41ca4a679ab63</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Arrays</topic><topic>Delays</topic><topic>field programmable gate array</topic><topic>Field programmable gate arrays</topic><topic>Image resolution</topic><topic>Imaging</topic><topic>Radio frequency</topic><topic>real-time</topic><topic>Synthetic aperture</topic><topic>Ultrasonic imaging</topic><toplevel>online_resources</toplevel><creatorcontrib>Jongho Park</creatorcontrib><creatorcontrib>Jongpil Lee</creatorcontrib><creatorcontrib>Do-Hyung Kim</creatorcontrib><creatorcontrib>Minsoo Kim</creatorcontrib><creatorcontrib>Jin Ho Chang</creatorcontrib><creatorcontrib>Tai-kyong Song</creatorcontrib><creatorcontrib>Yangmo Yoo</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Jongho Park</au><au>Jongpil Lee</au><au>Do-Hyung Kim</au><au>Minsoo Kim</au><au>Jin Ho Chang</au><au>Tai-kyong Song</au><au>Yangmo Yoo</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Efficient implementation of a real-time dynamic synthetic aperture beamformer</atitle><btitle>2012 IEEE International Ultrasonics Symposium</btitle><stitle>ULTSYM</stitle><date>2012-10</date><risdate>2012</risdate><spage>2250</spage><epage>2253</epage><pages>2250-2253</pages><issn>1051-0117</issn><isbn>9781467345613</isbn><isbn>146734561X</isbn><eisbn>9781467345606</eisbn><eisbn>9781467345620</eisbn><eisbn>1467345628</eisbn><eisbn>1467345601</eisbn><abstract>Synthetic aperture (SA) imaging techniques can provide high resolution over imaging depths, unlike a conventional receive focusing methods (CRDF) that suffered from a considerable degradation in resolution far from a transmit focal depth. However, it is difficult to incorporate SA on modern medical ultrasound imaging systems due to its high computational complexity. In this paper, the efficient implementation of a real-time dynamic SA beamformer where the number of synthetic scanlines is dynamically adjusted based on transmit beam pattern is presented. In the developed dynamic SA imaging system, 128-channel radio-frequency (RF) data are fed into four field programmable gate array (FPGAs, Virtex-5 LX330, Xilinx, USA) chips and 16 synthetic scanlines can be combined. Each FPGA operates at 160 MHz to produce 16 synthetic scanlines in parallel by a time sharing method. The partial synthetic scanline data from each module are sent to an accumulator to combine and stored in an internal buffer. This SA beamforming operation is repeated with RF data acquired from each excitation, and the final 16 synthetic scanline data are transferred to a personal computer (PC) for backend processing and image display. The developed SA beamformer with 16 synthetic beams is implemented by 51% of slice registers, 43% look-up-tables (LUTs), 71% of random access memories (RAMs) and 50% of digital signal processing (DSP) blocks in each FPGA.</abstract><pub>IEEE</pub><doi>10.1109/ULTSYM.2012.0562</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1051-0117
ispartof 2012 IEEE International Ultrasonics Symposium, 2012, p.2250-2253
issn 1051-0117
language eng
recordid cdi_ieee_primary_6562320
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Arrays
Delays
field programmable gate array
Field programmable gate arrays
Image resolution
Imaging
Radio frequency
real-time
Synthetic aperture
Ultrasonic imaging
title Efficient implementation of a real-time dynamic synthetic aperture beamformer
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T06%3A34%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Efficient%20implementation%20of%20a%20real-time%20dynamic%20synthetic%20aperture%20beamformer&rft.btitle=2012%20IEEE%20International%20Ultrasonics%20Symposium&rft.au=Jongho%20Park&rft.date=2012-10&rft.spage=2250&rft.epage=2253&rft.pages=2250-2253&rft.issn=1051-0117&rft.isbn=9781467345613&rft.isbn_list=146734561X&rft_id=info:doi/10.1109/ULTSYM.2012.0562&rft.eisbn=9781467345606&rft.eisbn_list=9781467345620&rft.eisbn_list=1467345628&rft.eisbn_list=1467345601&rft_dat=%3Cieee_6IE%3E6562320%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-b913013fa173a2f32e32e849a246538f7f9ff3cb055adf8291fd41ca4a679ab63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6562320&rfr_iscdi=true