Loading…

Fast lossless image compression with Radiation Hardening by hardware/software co-design on platform FPGAs

Motivated by the proposed NASA HyspIRI mission, our work improves existing Radiation Hardening by Software (RHBSW) techniques with FPGA Fabric Checkpoint/Restart (F2CPR) to bring enhanced hardware/software co-designed fault tolerance to commercial FPGA devices. We evaluate our approach on Fast Lossl...

Full description

Saved in:
Bibliographic Details
Main Authors: Schmidt, Andrew G., French, Matthew
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 106
container_issue
container_start_page 103
container_title
container_volume
creator Schmidt, Andrew G.
French, Matthew
description Motivated by the proposed NASA HyspIRI mission, our work improves existing Radiation Hardening by Software (RHBSW) techniques with FPGA Fabric Checkpoint/Restart (F2CPR) to bring enhanced hardware/software co-designed fault tolerance to commercial FPGA devices. We evaluate our approach on Fast Lossless (FL) image compression prediction for hyperspectral imagery in order to meet real-time performance requirements that cannot be achieved with aging radiation hardened devices. We report results across several metrics including resource utilization, performance, and an analysis of the vulnerability to Single Event Upsets (SEU) through the use of a hardware based fault injector. Results show low performance overhead (4-8%) achieving a speedup of 11.28× with a hardware accelerated implementation.
doi_str_mv 10.1109/ASAP.2013.6567560
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_6567560</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6567560</ieee_id><sourcerecordid>6567560</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-b514fcd0d3223b5ad3bf1c5d40f3bad9e7b9cd97132306b272c5b7561308f763</originalsourceid><addsrcrecordid>eNpVkMtqwzAQRVXaQtM0H1C60Q_YkTSWZC1NaJJCoKHNPkiW5Kj4hWUI-fs6NJuuZg7cOzAHoVdKUkqJWhbfxT5lhEIquJBckDu0UDKnmVSKZAry-3-c8Qc0o0RAInLBntBzjD-EMAkin6Gw1nHEdRdj7WLEodGVw2XX9MOEoWvxOYwn_KVt0OMVt3qwrg1thc0FnyY468EtY-fH6zI1E-tiqFo8Zftaj74bGrzeb4r4gh69rqNb3OYcHdbvh9U22X1uPlbFLglU8jExnGa-tMQCY2C4tmA8LbnNiAejrXLSqNIqSYEBEYZJVnIzSaBAci8FzNHb39ngnDv2w_TRcDneRMEvi1dbaQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Fast lossless image compression with Radiation Hardening by hardware/software co-design on platform FPGAs</title><source>IEEE Xplore All Conference Series</source><creator>Schmidt, Andrew G. ; French, Matthew</creator><creatorcontrib>Schmidt, Andrew G. ; French, Matthew</creatorcontrib><description>Motivated by the proposed NASA HyspIRI mission, our work improves existing Radiation Hardening by Software (RHBSW) techniques with FPGA Fabric Checkpoint/Restart (F2CPR) to bring enhanced hardware/software co-designed fault tolerance to commercial FPGA devices. We evaluate our approach on Fast Lossless (FL) image compression prediction for hyperspectral imagery in order to meet real-time performance requirements that cannot be achieved with aging radiation hardened devices. We report results across several metrics including resource utilization, performance, and an analysis of the vulnerability to Single Event Upsets (SEU) through the use of a hardware based fault injector. Results show low performance overhead (4-8%) achieving a speedup of 11.28× with a hardware accelerated implementation.</description><identifier>ISSN: 1063-6862</identifier><identifier>ISBN: 9781479904945</identifier><identifier>ISBN: 1479904945</identifier><identifier>EISBN: 9781479904938</identifier><identifier>EISBN: 1479904937</identifier><identifier>DOI: 10.1109/ASAP.2013.6567560</identifier><language>eng</language><publisher>IEEE</publisher><subject>Fabrics ; Fault tolerance ; Fault tolerant systems ; Field programmable gate arrays ; Hardware ; Radiation hardening (electronics) ; Software</subject><ispartof>2013 IEEE 24th International Conference on Application-Specific Systems, Architectures and Processors, 2013, p.103-106</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6567560$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2056,27923,54553,54918,54930</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6567560$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Schmidt, Andrew G.</creatorcontrib><creatorcontrib>French, Matthew</creatorcontrib><title>Fast lossless image compression with Radiation Hardening by hardware/software co-design on platform FPGAs</title><title>2013 IEEE 24th International Conference on Application-Specific Systems, Architectures and Processors</title><addtitle>ASAP</addtitle><description>Motivated by the proposed NASA HyspIRI mission, our work improves existing Radiation Hardening by Software (RHBSW) techniques with FPGA Fabric Checkpoint/Restart (F2CPR) to bring enhanced hardware/software co-designed fault tolerance to commercial FPGA devices. We evaluate our approach on Fast Lossless (FL) image compression prediction for hyperspectral imagery in order to meet real-time performance requirements that cannot be achieved with aging radiation hardened devices. We report results across several metrics including resource utilization, performance, and an analysis of the vulnerability to Single Event Upsets (SEU) through the use of a hardware based fault injector. Results show low performance overhead (4-8%) achieving a speedup of 11.28× with a hardware accelerated implementation.</description><subject>Fabrics</subject><subject>Fault tolerance</subject><subject>Fault tolerant systems</subject><subject>Field programmable gate arrays</subject><subject>Hardware</subject><subject>Radiation hardening (electronics)</subject><subject>Software</subject><issn>1063-6862</issn><isbn>9781479904945</isbn><isbn>1479904945</isbn><isbn>9781479904938</isbn><isbn>1479904937</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2013</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNpVkMtqwzAQRVXaQtM0H1C60Q_YkTSWZC1NaJJCoKHNPkiW5Kj4hWUI-fs6NJuuZg7cOzAHoVdKUkqJWhbfxT5lhEIquJBckDu0UDKnmVSKZAry-3-c8Qc0o0RAInLBntBzjD-EMAkin6Gw1nHEdRdj7WLEodGVw2XX9MOEoWvxOYwn_KVt0OMVt3qwrg1thc0FnyY468EtY-fH6zI1E-tiqFo8Zftaj74bGrzeb4r4gh69rqNb3OYcHdbvh9U22X1uPlbFLglU8jExnGa-tMQCY2C4tmA8LbnNiAejrXLSqNIqSYEBEYZJVnIzSaBAci8FzNHb39ngnDv2w_TRcDneRMEvi1dbaQ</recordid><startdate>201306</startdate><enddate>201306</enddate><creator>Schmidt, Andrew G.</creator><creator>French, Matthew</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201306</creationdate><title>Fast lossless image compression with Radiation Hardening by hardware/software co-design on platform FPGAs</title><author>Schmidt, Andrew G. ; French, Matthew</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-b514fcd0d3223b5ad3bf1c5d40f3bad9e7b9cd97132306b272c5b7561308f763</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Fabrics</topic><topic>Fault tolerance</topic><topic>Fault tolerant systems</topic><topic>Field programmable gate arrays</topic><topic>Hardware</topic><topic>Radiation hardening (electronics)</topic><topic>Software</topic><toplevel>online_resources</toplevel><creatorcontrib>Schmidt, Andrew G.</creatorcontrib><creatorcontrib>French, Matthew</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore Digital Library</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Schmidt, Andrew G.</au><au>French, Matthew</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Fast lossless image compression with Radiation Hardening by hardware/software co-design on platform FPGAs</atitle><btitle>2013 IEEE 24th International Conference on Application-Specific Systems, Architectures and Processors</btitle><stitle>ASAP</stitle><date>2013-06</date><risdate>2013</risdate><spage>103</spage><epage>106</epage><pages>103-106</pages><issn>1063-6862</issn><isbn>9781479904945</isbn><isbn>1479904945</isbn><eisbn>9781479904938</eisbn><eisbn>1479904937</eisbn><abstract>Motivated by the proposed NASA HyspIRI mission, our work improves existing Radiation Hardening by Software (RHBSW) techniques with FPGA Fabric Checkpoint/Restart (F2CPR) to bring enhanced hardware/software co-designed fault tolerance to commercial FPGA devices. We evaluate our approach on Fast Lossless (FL) image compression prediction for hyperspectral imagery in order to meet real-time performance requirements that cannot be achieved with aging radiation hardened devices. We report results across several metrics including resource utilization, performance, and an analysis of the vulnerability to Single Event Upsets (SEU) through the use of a hardware based fault injector. Results show low performance overhead (4-8%) achieving a speedup of 11.28× with a hardware accelerated implementation.</abstract><pub>IEEE</pub><doi>10.1109/ASAP.2013.6567560</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1063-6862
ispartof 2013 IEEE 24th International Conference on Application-Specific Systems, Architectures and Processors, 2013, p.103-106
issn 1063-6862
language eng
recordid cdi_ieee_primary_6567560
source IEEE Xplore All Conference Series
subjects Fabrics
Fault tolerance
Fault tolerant systems
Field programmable gate arrays
Hardware
Radiation hardening (electronics)
Software
title Fast lossless image compression with Radiation Hardening by hardware/software co-design on platform FPGAs
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T12%3A41%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Fast%20lossless%20image%20compression%20with%20Radiation%20Hardening%20by%20hardware/software%20co-design%20on%20platform%20FPGAs&rft.btitle=2013%20IEEE%2024th%20International%20Conference%20on%20Application-Specific%20Systems,%20Architectures%20and%20Processors&rft.au=Schmidt,%20Andrew%20G.&rft.date=2013-06&rft.spage=103&rft.epage=106&rft.pages=103-106&rft.issn=1063-6862&rft.isbn=9781479904945&rft.isbn_list=1479904945&rft_id=info:doi/10.1109/ASAP.2013.6567560&rft.eisbn=9781479904938&rft.eisbn_list=1479904937&rft_dat=%3Cieee_CHZPO%3E6567560%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-b514fcd0d3223b5ad3bf1c5d40f3bad9e7b9cd97132306b272c5b7561308f763%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6567560&rfr_iscdi=true