Loading…
An Empirical Investigation of V-I Trajectory Based Load Signatures for Non-Intrusive Load Monitoring
Choice of load signature or feature space is one of the most fundamental design choices for non-intrusive load monitoring or energy disaggregation problem. Electrical power quantities, harmonic load characteristics, canonical transient and steady-state waveforms are some of the typical choices of lo...
Saved in:
Published in: | IEEE transactions on smart grid 2014-03, Vol.5 (2), p.870-878 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c333t-e317baab6eeb95534ba0e36a5babe194e6481d6ec7413636ddd8692adad0cc0c3 |
---|---|
cites | cdi_FETCH-LOGICAL-c333t-e317baab6eeb95534ba0e36a5babe194e6481d6ec7413636ddd8692adad0cc0c3 |
container_end_page | 878 |
container_issue | 2 |
container_start_page | 870 |
container_title | IEEE transactions on smart grid |
container_volume | 5 |
creator | Hassan, Taha Javed, Fahad Arshad, Naveed |
description | Choice of load signature or feature space is one of the most fundamental design choices for non-intrusive load monitoring or energy disaggregation problem. Electrical power quantities, harmonic load characteristics, canonical transient and steady-state waveforms are some of the typical choices of load signature or load signature basis for current research addressing appliance classification and prediction. This paper expands and evaluates appliance load signatures based on V-I trajectory-the mutual locus of instantaneous voltage and current waveforms-for precision and robustness of prediction in classification algorithms used to disaggregate residential overall energy use and predict constituent appliance profiles. We also demonstrate the use of variants of differential evolution as a novel strategy for selection of optimal load models in context of energy disaggregation. A publicly available benchmark dataset REDD is employed for evaluation purposes. Our experimental evaluations indicate that these load signatures, in conjunction with a number of popular classification algorithms, offer better or generally comparable overall precision of prediction, robustness and reliability against dynamic, noisy and highly similar load signatures with reference to electrical power quantities and harmonic content. Herein, wave-shape features are found to be an effective new basis of classification and prediction for semi-automated energy disaggregation and monitoring. |
doi_str_mv | 10.1109/TSG.2013.2271282 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_6575197</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6575197</ieee_id><sourcerecordid>3931749401</sourcerecordid><originalsourceid>FETCH-LOGICAL-c333t-e317baab6eeb95534ba0e36a5babe194e6481d6ec7413636ddd8692adad0cc0c3</originalsourceid><addsrcrecordid>eNo9kEFPAjEQhRujiUS5m3hp4nmx3e526REJIgnqAfTadNtZUgIttrsk_HtLljCXmcP3ZuY9hJ4oGVFKxOt6NR_lhLJRnlc0H-c3aEBFITJGOL29ziW7R8MYtyQVY4znYoDMxOHZ_mCD1WqHF-4IsbUb1VrvsG_wb7bA66C2oFsfTvhNRTB46ZXBK7txqu0CRNz4gL-8yxauDV20R-iJT-9sUlm3eUR3jdpFGF76A_p5n62nH9nye76YTpaZTu-0GTBa1UrVHKAWZcmKWhFgXJW1qiF5AF6MqeGgq4IyzrgxZsxFrowyRGui2QN66fcegv_rkhO59V1w6aSkVSlYIQipEkV6SgcfY4BGHoLdq3CSlMhznDLFKc9xykucSfLcSywAXHFeViUVFfsHDqZxPw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1759349007</pqid></control><display><type>article</type><title>An Empirical Investigation of V-I Trajectory Based Load Signatures for Non-Intrusive Load Monitoring</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Hassan, Taha ; Javed, Fahad ; Arshad, Naveed</creator><creatorcontrib>Hassan, Taha ; Javed, Fahad ; Arshad, Naveed</creatorcontrib><description>Choice of load signature or feature space is one of the most fundamental design choices for non-intrusive load monitoring or energy disaggregation problem. Electrical power quantities, harmonic load characteristics, canonical transient and steady-state waveforms are some of the typical choices of load signature or load signature basis for current research addressing appliance classification and prediction. This paper expands and evaluates appliance load signatures based on V-I trajectory-the mutual locus of instantaneous voltage and current waveforms-for precision and robustness of prediction in classification algorithms used to disaggregate residential overall energy use and predict constituent appliance profiles. We also demonstrate the use of variants of differential evolution as a novel strategy for selection of optimal load models in context of energy disaggregation. A publicly available benchmark dataset REDD is employed for evaluation purposes. Our experimental evaluations indicate that these load signatures, in conjunction with a number of popular classification algorithms, offer better or generally comparable overall precision of prediction, robustness and reliability against dynamic, noisy and highly similar load signatures with reference to electrical power quantities and harmonic content. Herein, wave-shape features are found to be an effective new basis of classification and prediction for semi-automated energy disaggregation and monitoring.</description><identifier>ISSN: 1949-3053</identifier><identifier>EISSN: 1949-3061</identifier><identifier>DOI: 10.1109/TSG.2013.2271282</identifier><identifier>CODEN: ITSGBQ</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Classification ; Feedforward neural networks ; Home appliances ; load monitoring ; load signature ; optimization ; Prediction algorithms ; Signatures ; smart grids ; Sociology ; Statistics ; supervised learning ; support vector machines ; Switches ; Training ; Trajectory</subject><ispartof>IEEE transactions on smart grid, 2014-03, Vol.5 (2), p.870-878</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c333t-e317baab6eeb95534ba0e36a5babe194e6481d6ec7413636ddd8692adad0cc0c3</citedby><cites>FETCH-LOGICAL-c333t-e317baab6eeb95534ba0e36a5babe194e6481d6ec7413636ddd8692adad0cc0c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6575197$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Hassan, Taha</creatorcontrib><creatorcontrib>Javed, Fahad</creatorcontrib><creatorcontrib>Arshad, Naveed</creatorcontrib><title>An Empirical Investigation of V-I Trajectory Based Load Signatures for Non-Intrusive Load Monitoring</title><title>IEEE transactions on smart grid</title><addtitle>TSG</addtitle><description>Choice of load signature or feature space is one of the most fundamental design choices for non-intrusive load monitoring or energy disaggregation problem. Electrical power quantities, harmonic load characteristics, canonical transient and steady-state waveforms are some of the typical choices of load signature or load signature basis for current research addressing appliance classification and prediction. This paper expands and evaluates appliance load signatures based on V-I trajectory-the mutual locus of instantaneous voltage and current waveforms-for precision and robustness of prediction in classification algorithms used to disaggregate residential overall energy use and predict constituent appliance profiles. We also demonstrate the use of variants of differential evolution as a novel strategy for selection of optimal load models in context of energy disaggregation. A publicly available benchmark dataset REDD is employed for evaluation purposes. Our experimental evaluations indicate that these load signatures, in conjunction with a number of popular classification algorithms, offer better or generally comparable overall precision of prediction, robustness and reliability against dynamic, noisy and highly similar load signatures with reference to electrical power quantities and harmonic content. Herein, wave-shape features are found to be an effective new basis of classification and prediction for semi-automated energy disaggregation and monitoring.</description><subject>Algorithms</subject><subject>Classification</subject><subject>Feedforward neural networks</subject><subject>Home appliances</subject><subject>load monitoring</subject><subject>load signature</subject><subject>optimization</subject><subject>Prediction algorithms</subject><subject>Signatures</subject><subject>smart grids</subject><subject>Sociology</subject><subject>Statistics</subject><subject>supervised learning</subject><subject>support vector machines</subject><subject>Switches</subject><subject>Training</subject><subject>Trajectory</subject><issn>1949-3053</issn><issn>1949-3061</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNo9kEFPAjEQhRujiUS5m3hp4nmx3e526REJIgnqAfTadNtZUgIttrsk_HtLljCXmcP3ZuY9hJ4oGVFKxOt6NR_lhLJRnlc0H-c3aEBFITJGOL29ziW7R8MYtyQVY4znYoDMxOHZ_mCD1WqHF-4IsbUb1VrvsG_wb7bA66C2oFsfTvhNRTB46ZXBK7txqu0CRNz4gL-8yxauDV20R-iJT-9sUlm3eUR3jdpFGF76A_p5n62nH9nye76YTpaZTu-0GTBa1UrVHKAWZcmKWhFgXJW1qiF5AF6MqeGgq4IyzrgxZsxFrowyRGui2QN66fcegv_rkhO59V1w6aSkVSlYIQipEkV6SgcfY4BGHoLdq3CSlMhznDLFKc9xykucSfLcSywAXHFeViUVFfsHDqZxPw</recordid><startdate>20140301</startdate><enddate>20140301</enddate><creator>Hassan, Taha</creator><creator>Javed, Fahad</creator><creator>Arshad, Naveed</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20140301</creationdate><title>An Empirical Investigation of V-I Trajectory Based Load Signatures for Non-Intrusive Load Monitoring</title><author>Hassan, Taha ; Javed, Fahad ; Arshad, Naveed</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c333t-e317baab6eeb95534ba0e36a5babe194e6481d6ec7413636ddd8692adad0cc0c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Algorithms</topic><topic>Classification</topic><topic>Feedforward neural networks</topic><topic>Home appliances</topic><topic>load monitoring</topic><topic>load signature</topic><topic>optimization</topic><topic>Prediction algorithms</topic><topic>Signatures</topic><topic>smart grids</topic><topic>Sociology</topic><topic>Statistics</topic><topic>supervised learning</topic><topic>support vector machines</topic><topic>Switches</topic><topic>Training</topic><topic>Trajectory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hassan, Taha</creatorcontrib><creatorcontrib>Javed, Fahad</creatorcontrib><creatorcontrib>Arshad, Naveed</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on smart grid</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hassan, Taha</au><au>Javed, Fahad</au><au>Arshad, Naveed</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Empirical Investigation of V-I Trajectory Based Load Signatures for Non-Intrusive Load Monitoring</atitle><jtitle>IEEE transactions on smart grid</jtitle><stitle>TSG</stitle><date>2014-03-01</date><risdate>2014</risdate><volume>5</volume><issue>2</issue><spage>870</spage><epage>878</epage><pages>870-878</pages><issn>1949-3053</issn><eissn>1949-3061</eissn><coden>ITSGBQ</coden><abstract>Choice of load signature or feature space is one of the most fundamental design choices for non-intrusive load monitoring or energy disaggregation problem. Electrical power quantities, harmonic load characteristics, canonical transient and steady-state waveforms are some of the typical choices of load signature or load signature basis for current research addressing appliance classification and prediction. This paper expands and evaluates appliance load signatures based on V-I trajectory-the mutual locus of instantaneous voltage and current waveforms-for precision and robustness of prediction in classification algorithms used to disaggregate residential overall energy use and predict constituent appliance profiles. We also demonstrate the use of variants of differential evolution as a novel strategy for selection of optimal load models in context of energy disaggregation. A publicly available benchmark dataset REDD is employed for evaluation purposes. Our experimental evaluations indicate that these load signatures, in conjunction with a number of popular classification algorithms, offer better or generally comparable overall precision of prediction, robustness and reliability against dynamic, noisy and highly similar load signatures with reference to electrical power quantities and harmonic content. Herein, wave-shape features are found to be an effective new basis of classification and prediction for semi-automated energy disaggregation and monitoring.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TSG.2013.2271282</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1949-3053 |
ispartof | IEEE transactions on smart grid, 2014-03, Vol.5 (2), p.870-878 |
issn | 1949-3053 1949-3061 |
language | eng |
recordid | cdi_ieee_primary_6575197 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Algorithms Classification Feedforward neural networks Home appliances load monitoring load signature optimization Prediction algorithms Signatures smart grids Sociology Statistics supervised learning support vector machines Switches Training Trajectory |
title | An Empirical Investigation of V-I Trajectory Based Load Signatures for Non-Intrusive Load Monitoring |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T22%3A07%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Empirical%20Investigation%20of%20V-I%20Trajectory%20Based%20Load%20Signatures%20for%20Non-Intrusive%20Load%20Monitoring&rft.jtitle=IEEE%20transactions%20on%20smart%20grid&rft.au=Hassan,%20Taha&rft.date=2014-03-01&rft.volume=5&rft.issue=2&rft.spage=870&rft.epage=878&rft.pages=870-878&rft.issn=1949-3053&rft.eissn=1949-3061&rft.coden=ITSGBQ&rft_id=info:doi/10.1109/TSG.2013.2271282&rft_dat=%3Cproquest_ieee_%3E3931749401%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c333t-e317baab6eeb95534ba0e36a5babe194e6481d6ec7413636ddd8692adad0cc0c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1759349007&rft_id=info:pmid/&rft_ieee_id=6575197&rfr_iscdi=true |