Loading…

An Empirical Investigation of V-I Trajectory Based Load Signatures for Non-Intrusive Load Monitoring

Choice of load signature or feature space is one of the most fundamental design choices for non-intrusive load monitoring or energy disaggregation problem. Electrical power quantities, harmonic load characteristics, canonical transient and steady-state waveforms are some of the typical choices of lo...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on smart grid 2014-03, Vol.5 (2), p.870-878
Main Authors: Hassan, Taha, Javed, Fahad, Arshad, Naveed
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c333t-e317baab6eeb95534ba0e36a5babe194e6481d6ec7413636ddd8692adad0cc0c3
cites cdi_FETCH-LOGICAL-c333t-e317baab6eeb95534ba0e36a5babe194e6481d6ec7413636ddd8692adad0cc0c3
container_end_page 878
container_issue 2
container_start_page 870
container_title IEEE transactions on smart grid
container_volume 5
creator Hassan, Taha
Javed, Fahad
Arshad, Naveed
description Choice of load signature or feature space is one of the most fundamental design choices for non-intrusive load monitoring or energy disaggregation problem. Electrical power quantities, harmonic load characteristics, canonical transient and steady-state waveforms are some of the typical choices of load signature or load signature basis for current research addressing appliance classification and prediction. This paper expands and evaluates appliance load signatures based on V-I trajectory-the mutual locus of instantaneous voltage and current waveforms-for precision and robustness of prediction in classification algorithms used to disaggregate residential overall energy use and predict constituent appliance profiles. We also demonstrate the use of variants of differential evolution as a novel strategy for selection of optimal load models in context of energy disaggregation. A publicly available benchmark dataset REDD is employed for evaluation purposes. Our experimental evaluations indicate that these load signatures, in conjunction with a number of popular classification algorithms, offer better or generally comparable overall precision of prediction, robustness and reliability against dynamic, noisy and highly similar load signatures with reference to electrical power quantities and harmonic content. Herein, wave-shape features are found to be an effective new basis of classification and prediction for semi-automated energy disaggregation and monitoring.
doi_str_mv 10.1109/TSG.2013.2271282
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_6575197</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6575197</ieee_id><sourcerecordid>3931749401</sourcerecordid><originalsourceid>FETCH-LOGICAL-c333t-e317baab6eeb95534ba0e36a5babe194e6481d6ec7413636ddd8692adad0cc0c3</originalsourceid><addsrcrecordid>eNo9kEFPAjEQhRujiUS5m3hp4nmx3e526REJIgnqAfTadNtZUgIttrsk_HtLljCXmcP3ZuY9hJ4oGVFKxOt6NR_lhLJRnlc0H-c3aEBFITJGOL29ziW7R8MYtyQVY4znYoDMxOHZ_mCD1WqHF-4IsbUb1VrvsG_wb7bA66C2oFsfTvhNRTB46ZXBK7txqu0CRNz4gL-8yxauDV20R-iJT-9sUlm3eUR3jdpFGF76A_p5n62nH9nye76YTpaZTu-0GTBa1UrVHKAWZcmKWhFgXJW1qiF5AF6MqeGgq4IyzrgxZsxFrowyRGui2QN66fcegv_rkhO59V1w6aSkVSlYIQipEkV6SgcfY4BGHoLdq3CSlMhznDLFKc9xykucSfLcSywAXHFeViUVFfsHDqZxPw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1759349007</pqid></control><display><type>article</type><title>An Empirical Investigation of V-I Trajectory Based Load Signatures for Non-Intrusive Load Monitoring</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Hassan, Taha ; Javed, Fahad ; Arshad, Naveed</creator><creatorcontrib>Hassan, Taha ; Javed, Fahad ; Arshad, Naveed</creatorcontrib><description>Choice of load signature or feature space is one of the most fundamental design choices for non-intrusive load monitoring or energy disaggregation problem. Electrical power quantities, harmonic load characteristics, canonical transient and steady-state waveforms are some of the typical choices of load signature or load signature basis for current research addressing appliance classification and prediction. This paper expands and evaluates appliance load signatures based on V-I trajectory-the mutual locus of instantaneous voltage and current waveforms-for precision and robustness of prediction in classification algorithms used to disaggregate residential overall energy use and predict constituent appliance profiles. We also demonstrate the use of variants of differential evolution as a novel strategy for selection of optimal load models in context of energy disaggregation. A publicly available benchmark dataset REDD is employed for evaluation purposes. Our experimental evaluations indicate that these load signatures, in conjunction with a number of popular classification algorithms, offer better or generally comparable overall precision of prediction, robustness and reliability against dynamic, noisy and highly similar load signatures with reference to electrical power quantities and harmonic content. Herein, wave-shape features are found to be an effective new basis of classification and prediction for semi-automated energy disaggregation and monitoring.</description><identifier>ISSN: 1949-3053</identifier><identifier>EISSN: 1949-3061</identifier><identifier>DOI: 10.1109/TSG.2013.2271282</identifier><identifier>CODEN: ITSGBQ</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Classification ; Feedforward neural networks ; Home appliances ; load monitoring ; load signature ; optimization ; Prediction algorithms ; Signatures ; smart grids ; Sociology ; Statistics ; supervised learning ; support vector machines ; Switches ; Training ; Trajectory</subject><ispartof>IEEE transactions on smart grid, 2014-03, Vol.5 (2), p.870-878</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c333t-e317baab6eeb95534ba0e36a5babe194e6481d6ec7413636ddd8692adad0cc0c3</citedby><cites>FETCH-LOGICAL-c333t-e317baab6eeb95534ba0e36a5babe194e6481d6ec7413636ddd8692adad0cc0c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6575197$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Hassan, Taha</creatorcontrib><creatorcontrib>Javed, Fahad</creatorcontrib><creatorcontrib>Arshad, Naveed</creatorcontrib><title>An Empirical Investigation of V-I Trajectory Based Load Signatures for Non-Intrusive Load Monitoring</title><title>IEEE transactions on smart grid</title><addtitle>TSG</addtitle><description>Choice of load signature or feature space is one of the most fundamental design choices for non-intrusive load monitoring or energy disaggregation problem. Electrical power quantities, harmonic load characteristics, canonical transient and steady-state waveforms are some of the typical choices of load signature or load signature basis for current research addressing appliance classification and prediction. This paper expands and evaluates appliance load signatures based on V-I trajectory-the mutual locus of instantaneous voltage and current waveforms-for precision and robustness of prediction in classification algorithms used to disaggregate residential overall energy use and predict constituent appliance profiles. We also demonstrate the use of variants of differential evolution as a novel strategy for selection of optimal load models in context of energy disaggregation. A publicly available benchmark dataset REDD is employed for evaluation purposes. Our experimental evaluations indicate that these load signatures, in conjunction with a number of popular classification algorithms, offer better or generally comparable overall precision of prediction, robustness and reliability against dynamic, noisy and highly similar load signatures with reference to electrical power quantities and harmonic content. Herein, wave-shape features are found to be an effective new basis of classification and prediction for semi-automated energy disaggregation and monitoring.</description><subject>Algorithms</subject><subject>Classification</subject><subject>Feedforward neural networks</subject><subject>Home appliances</subject><subject>load monitoring</subject><subject>load signature</subject><subject>optimization</subject><subject>Prediction algorithms</subject><subject>Signatures</subject><subject>smart grids</subject><subject>Sociology</subject><subject>Statistics</subject><subject>supervised learning</subject><subject>support vector machines</subject><subject>Switches</subject><subject>Training</subject><subject>Trajectory</subject><issn>1949-3053</issn><issn>1949-3061</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNo9kEFPAjEQhRujiUS5m3hp4nmx3e526REJIgnqAfTadNtZUgIttrsk_HtLljCXmcP3ZuY9hJ4oGVFKxOt6NR_lhLJRnlc0H-c3aEBFITJGOL29ziW7R8MYtyQVY4znYoDMxOHZ_mCD1WqHF-4IsbUb1VrvsG_wb7bA66C2oFsfTvhNRTB46ZXBK7txqu0CRNz4gL-8yxauDV20R-iJT-9sUlm3eUR3jdpFGF76A_p5n62nH9nye76YTpaZTu-0GTBa1UrVHKAWZcmKWhFgXJW1qiF5AF6MqeGgq4IyzrgxZsxFrowyRGui2QN66fcegv_rkhO59V1w6aSkVSlYIQipEkV6SgcfY4BGHoLdq3CSlMhznDLFKc9xykucSfLcSywAXHFeViUVFfsHDqZxPw</recordid><startdate>20140301</startdate><enddate>20140301</enddate><creator>Hassan, Taha</creator><creator>Javed, Fahad</creator><creator>Arshad, Naveed</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20140301</creationdate><title>An Empirical Investigation of V-I Trajectory Based Load Signatures for Non-Intrusive Load Monitoring</title><author>Hassan, Taha ; Javed, Fahad ; Arshad, Naveed</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c333t-e317baab6eeb95534ba0e36a5babe194e6481d6ec7413636ddd8692adad0cc0c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Algorithms</topic><topic>Classification</topic><topic>Feedforward neural networks</topic><topic>Home appliances</topic><topic>load monitoring</topic><topic>load signature</topic><topic>optimization</topic><topic>Prediction algorithms</topic><topic>Signatures</topic><topic>smart grids</topic><topic>Sociology</topic><topic>Statistics</topic><topic>supervised learning</topic><topic>support vector machines</topic><topic>Switches</topic><topic>Training</topic><topic>Trajectory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hassan, Taha</creatorcontrib><creatorcontrib>Javed, Fahad</creatorcontrib><creatorcontrib>Arshad, Naveed</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on smart grid</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hassan, Taha</au><au>Javed, Fahad</au><au>Arshad, Naveed</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Empirical Investigation of V-I Trajectory Based Load Signatures for Non-Intrusive Load Monitoring</atitle><jtitle>IEEE transactions on smart grid</jtitle><stitle>TSG</stitle><date>2014-03-01</date><risdate>2014</risdate><volume>5</volume><issue>2</issue><spage>870</spage><epage>878</epage><pages>870-878</pages><issn>1949-3053</issn><eissn>1949-3061</eissn><coden>ITSGBQ</coden><abstract>Choice of load signature or feature space is one of the most fundamental design choices for non-intrusive load monitoring or energy disaggregation problem. Electrical power quantities, harmonic load characteristics, canonical transient and steady-state waveforms are some of the typical choices of load signature or load signature basis for current research addressing appliance classification and prediction. This paper expands and evaluates appliance load signatures based on V-I trajectory-the mutual locus of instantaneous voltage and current waveforms-for precision and robustness of prediction in classification algorithms used to disaggregate residential overall energy use and predict constituent appliance profiles. We also demonstrate the use of variants of differential evolution as a novel strategy for selection of optimal load models in context of energy disaggregation. A publicly available benchmark dataset REDD is employed for evaluation purposes. Our experimental evaluations indicate that these load signatures, in conjunction with a number of popular classification algorithms, offer better or generally comparable overall precision of prediction, robustness and reliability against dynamic, noisy and highly similar load signatures with reference to electrical power quantities and harmonic content. Herein, wave-shape features are found to be an effective new basis of classification and prediction for semi-automated energy disaggregation and monitoring.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TSG.2013.2271282</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1949-3053
ispartof IEEE transactions on smart grid, 2014-03, Vol.5 (2), p.870-878
issn 1949-3053
1949-3061
language eng
recordid cdi_ieee_primary_6575197
source IEEE Electronic Library (IEL) Journals
subjects Algorithms
Classification
Feedforward neural networks
Home appliances
load monitoring
load signature
optimization
Prediction algorithms
Signatures
smart grids
Sociology
Statistics
supervised learning
support vector machines
Switches
Training
Trajectory
title An Empirical Investigation of V-I Trajectory Based Load Signatures for Non-Intrusive Load Monitoring
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T22%3A07%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Empirical%20Investigation%20of%20V-I%20Trajectory%20Based%20Load%20Signatures%20for%20Non-Intrusive%20Load%20Monitoring&rft.jtitle=IEEE%20transactions%20on%20smart%20grid&rft.au=Hassan,%20Taha&rft.date=2014-03-01&rft.volume=5&rft.issue=2&rft.spage=870&rft.epage=878&rft.pages=870-878&rft.issn=1949-3053&rft.eissn=1949-3061&rft.coden=ITSGBQ&rft_id=info:doi/10.1109/TSG.2013.2271282&rft_dat=%3Cproquest_ieee_%3E3931749401%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c333t-e317baab6eeb95534ba0e36a5babe194e6481d6ec7413636ddd8692adad0cc0c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1759349007&rft_id=info:pmid/&rft_ieee_id=6575197&rfr_iscdi=true