Loading…
CloudPD: Problem determination and diagnosis in shared dynamic clouds
In this work, we address problem determination in virtualized clouds. We show that high dynamism, resource sharing, frequent reconfiguration, high propensity to faults and automated management introduce significant new challenges towards fault diagnosis in clouds. Towards this, we propose CloudPD, a...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this work, we address problem determination in virtualized clouds. We show that high dynamism, resource sharing, frequent reconfiguration, high propensity to faults and automated management introduce significant new challenges towards fault diagnosis in clouds. Towards this, we propose CloudPD, a fault management framework for clouds. CloudPD leverages (i) a canonical representation of the operating environment to quantify the impact of sharing; (ii) an online learning process to tackle dynamism; (iii) a correlation-based performance models for higher detection accuracy; and (iv) an integrated end-to-end feedback loop to synergize with a cloud management ecosystem. Using a prototype implementation with cloud representative batch and transactional workloads like Hadoop, Olio and RUBiS, it is shown that CloudPD detects and diagnoses faults with low false positives ( |
---|---|
ISSN: | 1530-0889 2158-3927 |
DOI: | 10.1109/DSN.2013.6575298 |