Loading…

Robust pole placement in LMI regions

This paper discusses analysis and synthesis techniques for robust pole placement in linear matrix inequality (LMI) regions, a class of convex regions of the complex plane that embraces most practically useful stability regions. The focus is on linear systems with static uncertainty on the state matr...

Full description

Saved in:
Bibliographic Details
Main Authors: Chilali, M., Gahinet, P., Apkarian, P.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 1296 vol.2
container_issue
container_start_page 1291
container_title
container_volume 2
creator Chilali, M.
Gahinet, P.
Apkarian, P.
description This paper discusses analysis and synthesis techniques for robust pole placement in linear matrix inequality (LMI) regions, a class of convex regions of the complex plane that embraces most practically useful stability regions. The focus is on linear systems with static uncertainty on the state matrix. For this class of uncertain systems, the notion of quadratic stability and the related robustness analysis tests are generalized to arbitrary LMI regions. The resulting tests for robust pole clustering are all numerically tractable since they involve solving LMIs, and cover both unstructured and parameter uncertainty. These analysis results are then applied to the synthesis of dynamic output-feedback controllers that robustly assign the closed-loop poles in a prescribed LMI region. With some conservatism, this problem is again tractable via LMI optimization. In addition, robust pole placement can be combined with other control objectives such as H/sub 2/ or H/sub /spl infin// performance to capture realistic sets of design specifications. Physically-motivated examples demonstrate the effectiveness of the approaches for robust analysis and synthesis.
doi_str_mv 10.1109/CDC.1997.657634
format conference_proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_657634</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>657634</ieee_id><sourcerecordid>657634</sourcerecordid><originalsourceid>FETCH-LOGICAL-i172t-8ddd69238015714372088feab8a6bbbb80a340014ff44f758824bb807366af1a3</originalsourceid><addsrcrecordid>eNotj01LxDAURR-o4MzoWnCVhdvW95I0eVlK_RqoCKLrIbWJRDptaerCf68y3s2BszhwAS4ISyJ01_VtXZJztjSVNUofwRoto9LEVh7DCslRISWZU1jn_ImIjMas4OplbL_yIqaxD2Lq_XvYh2ERaRDN01bM4SONQz6Dk-j7HM7_uYG3-7vX-rFonh-29U1TJLJyKbjrOuOkYqTKklZWInMMvmVv2t8xeqURSceodbQVs9R_1ipjfCSvNnB56KYQwm6a097P37vDIfUDJa88lg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Robust pole placement in LMI regions</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Chilali, M. ; Gahinet, P. ; Apkarian, P.</creator><creatorcontrib>Chilali, M. ; Gahinet, P. ; Apkarian, P.</creatorcontrib><description>This paper discusses analysis and synthesis techniques for robust pole placement in linear matrix inequality (LMI) regions, a class of convex regions of the complex plane that embraces most practically useful stability regions. The focus is on linear systems with static uncertainty on the state matrix. For this class of uncertain systems, the notion of quadratic stability and the related robustness analysis tests are generalized to arbitrary LMI regions. The resulting tests for robust pole clustering are all numerically tractable since they involve solving LMIs, and cover both unstructured and parameter uncertainty. These analysis results are then applied to the synthesis of dynamic output-feedback controllers that robustly assign the closed-loop poles in a prescribed LMI region. With some conservatism, this problem is again tractable via LMI optimization. In addition, robust pole placement can be combined with other control objectives such as H/sub 2/ or H/sub /spl infin// performance to capture realistic sets of design specifications. Physically-motivated examples demonstrate the effectiveness of the approaches for robust analysis and synthesis.</description><identifier>ISSN: 0191-2216</identifier><identifier>ISBN: 0780341872</identifier><identifier>ISBN: 9780780341876</identifier><identifier>DOI: 10.1109/CDC.1997.657634</identifier><language>eng</language><publisher>IEEE</publisher><subject>Linear matrix inequalities ; Linear systems ; Robust control ; Robust stability ; Robustness ; Stability analysis ; State feedback ; System testing ; Uncertain systems ; Uncertainty</subject><ispartof>Proceedings of the 36th IEEE Conference on Decision and Control, 1997, Vol.2, p.1291-1296 vol.2</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/657634$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,4050,4051,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/657634$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Chilali, M.</creatorcontrib><creatorcontrib>Gahinet, P.</creatorcontrib><creatorcontrib>Apkarian, P.</creatorcontrib><title>Robust pole placement in LMI regions</title><title>Proceedings of the 36th IEEE Conference on Decision and Control</title><addtitle>CDC</addtitle><description>This paper discusses analysis and synthesis techniques for robust pole placement in linear matrix inequality (LMI) regions, a class of convex regions of the complex plane that embraces most practically useful stability regions. The focus is on linear systems with static uncertainty on the state matrix. For this class of uncertain systems, the notion of quadratic stability and the related robustness analysis tests are generalized to arbitrary LMI regions. The resulting tests for robust pole clustering are all numerically tractable since they involve solving LMIs, and cover both unstructured and parameter uncertainty. These analysis results are then applied to the synthesis of dynamic output-feedback controllers that robustly assign the closed-loop poles in a prescribed LMI region. With some conservatism, this problem is again tractable via LMI optimization. In addition, robust pole placement can be combined with other control objectives such as H/sub 2/ or H/sub /spl infin// performance to capture realistic sets of design specifications. Physically-motivated examples demonstrate the effectiveness of the approaches for robust analysis and synthesis.</description><subject>Linear matrix inequalities</subject><subject>Linear systems</subject><subject>Robust control</subject><subject>Robust stability</subject><subject>Robustness</subject><subject>Stability analysis</subject><subject>State feedback</subject><subject>System testing</subject><subject>Uncertain systems</subject><subject>Uncertainty</subject><issn>0191-2216</issn><isbn>0780341872</isbn><isbn>9780780341876</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>1997</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotj01LxDAURR-o4MzoWnCVhdvW95I0eVlK_RqoCKLrIbWJRDptaerCf68y3s2BszhwAS4ISyJ01_VtXZJztjSVNUofwRoto9LEVh7DCslRISWZU1jn_ImIjMas4OplbL_yIqaxD2Lq_XvYh2ERaRDN01bM4SONQz6Dk-j7HM7_uYG3-7vX-rFonh-29U1TJLJyKbjrOuOkYqTKklZWInMMvmVv2t8xeqURSceodbQVs9R_1ipjfCSvNnB56KYQwm6a097P37vDIfUDJa88lg</recordid><startdate>1997</startdate><enddate>1997</enddate><creator>Chilali, M.</creator><creator>Gahinet, P.</creator><creator>Apkarian, P.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>1997</creationdate><title>Robust pole placement in LMI regions</title><author>Chilali, M. ; Gahinet, P. ; Apkarian, P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i172t-8ddd69238015714372088feab8a6bbbb80a340014ff44f758824bb807366af1a3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>1997</creationdate><topic>Linear matrix inequalities</topic><topic>Linear systems</topic><topic>Robust control</topic><topic>Robust stability</topic><topic>Robustness</topic><topic>Stability analysis</topic><topic>State feedback</topic><topic>System testing</topic><topic>Uncertain systems</topic><topic>Uncertainty</topic><toplevel>online_resources</toplevel><creatorcontrib>Chilali, M.</creatorcontrib><creatorcontrib>Gahinet, P.</creatorcontrib><creatorcontrib>Apkarian, P.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chilali, M.</au><au>Gahinet, P.</au><au>Apkarian, P.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Robust pole placement in LMI regions</atitle><btitle>Proceedings of the 36th IEEE Conference on Decision and Control</btitle><stitle>CDC</stitle><date>1997</date><risdate>1997</risdate><volume>2</volume><spage>1291</spage><epage>1296 vol.2</epage><pages>1291-1296 vol.2</pages><issn>0191-2216</issn><isbn>0780341872</isbn><isbn>9780780341876</isbn><abstract>This paper discusses analysis and synthesis techniques for robust pole placement in linear matrix inequality (LMI) regions, a class of convex regions of the complex plane that embraces most practically useful stability regions. The focus is on linear systems with static uncertainty on the state matrix. For this class of uncertain systems, the notion of quadratic stability and the related robustness analysis tests are generalized to arbitrary LMI regions. The resulting tests for robust pole clustering are all numerically tractable since they involve solving LMIs, and cover both unstructured and parameter uncertainty. These analysis results are then applied to the synthesis of dynamic output-feedback controllers that robustly assign the closed-loop poles in a prescribed LMI region. With some conservatism, this problem is again tractable via LMI optimization. In addition, robust pole placement can be combined with other control objectives such as H/sub 2/ or H/sub /spl infin// performance to capture realistic sets of design specifications. Physically-motivated examples demonstrate the effectiveness of the approaches for robust analysis and synthesis.</abstract><pub>IEEE</pub><doi>10.1109/CDC.1997.657634</doi></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0191-2216
ispartof Proceedings of the 36th IEEE Conference on Decision and Control, 1997, Vol.2, p.1291-1296 vol.2
issn 0191-2216
language eng
recordid cdi_ieee_primary_657634
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Linear matrix inequalities
Linear systems
Robust control
Robust stability
Robustness
Stability analysis
State feedback
System testing
Uncertain systems
Uncertainty
title Robust pole placement in LMI regions
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T23%3A16%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Robust%20pole%20placement%20in%20LMI%20regions&rft.btitle=Proceedings%20of%20the%2036th%20IEEE%20Conference%20on%20Decision%20and%20Control&rft.au=Chilali,%20M.&rft.date=1997&rft.volume=2&rft.spage=1291&rft.epage=1296%20vol.2&rft.pages=1291-1296%20vol.2&rft.issn=0191-2216&rft.isbn=0780341872&rft.isbn_list=9780780341876&rft_id=info:doi/10.1109/CDC.1997.657634&rft_dat=%3Cieee_6IE%3E657634%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i172t-8ddd69238015714372088feab8a6bbbb80a340014ff44f758824bb807366af1a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=657634&rfr_iscdi=true