Loading…
A 10 nm Si-based bulk FinFETs 6T SRAM with multiple fin heights technology for 25% better static noise margin
For the first time, 10nm Si-based bulk FinFETs 6T SRAM (beta ratio = 2) with novel multiple fin heights technology is successfully demonstrated with 25% better static noise margin at 0.6 V than single fin-height baseline. Meanwhile, presented technology also provides advantage in SRAM cell size by 2...
Saved in:
Main Authors: | , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | For the first time, 10nm Si-based bulk FinFETs 6T SRAM (beta ratio = 2) with novel multiple fin heights technology is successfully demonstrated with 25% better static noise margin at 0.6 V than single fin-height baseline. Meanwhile, presented technology also provides advantage in SRAM cell size by 20% scaling down. It can furthermore offer potential of beyond 10nm Si-based CMOS computing circuit technology. |
---|---|
ISSN: | 2158-5601 2158-5636 |