Loading…

Calibration of an Integrated Land-Use and Transportation Model Using Maximum-Likelihood Estimation

The focus of this work is calibration of the land-use module of an integrated land-use and transportation model (ILUTM). The calibration task involves estimating key parameters that dictate the output of the land-use module. Hence, an algorithm based on maximum-likelihood estimation (MLE) is develop...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on computers 2014-01, Vol.63 (1), p.167-178
Main Authors: Dutta, Parikshit, Arnaud, Elise, Prados, Emmanuel, Saujot, Mathieu
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c324t-e42048c312497bfeff7c7539f071bac45e6a5e77f2c9998f70595e7c984314963
cites cdi_FETCH-LOGICAL-c324t-e42048c312497bfeff7c7539f071bac45e6a5e77f2c9998f70595e7c984314963
container_end_page 178
container_issue 1
container_start_page 167
container_title IEEE transactions on computers
container_volume 63
creator Dutta, Parikshit
Arnaud, Elise
Prados, Emmanuel
Saujot, Mathieu
description The focus of this work is calibration of the land-use module of an integrated land-use and transportation model (ILUTM). The calibration task involves estimating key parameters that dictate the output of the land-use module. Hence, an algorithm based on maximum-likelihood estimation (MLE) is developed for calibration. Furthermore, the observed values of the outputs from the land-use module are assumed to admit a Gaussian error. The ILUTM methodology used here is TRANUS which is used to model the city of Grenoble in France. The aforementioned algorithm is then applied to calibrate the land-use module of the Grenoble model. The covariance of the Gaussian error term is assumed to be unknown. It is represented as a function of the land-use module inputs and "hyperparameters.â' The resulting MLE optimization problem has 111 parameters to be estimated, 90 of which are land use parameters and 21 are hyperparameters of the Gaussian covariance kernel. The performance of the proposed calibration methodology is then compared to the traditional calibration techniques used for land use and transportation models, when applied to the Grenoble land-use model. It is observed that the proposed method outperforms the traditional technique when compared based upon a given quantity of interest.
doi_str_mv 10.1109/TC.2013.168
format article
fullrecord <record><control><sourceid>hal_ieee_</sourceid><recordid>TN_cdi_ieee_primary_6579603</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6579603</ieee_id><sourcerecordid>oai_HAL_hal_00748555v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c324t-e42048c312497bfeff7c7539f071bac45e6a5e77f2c9998f70595e7c984314963</originalsourceid><addsrcrecordid>eNo90MFLwzAUBvAgCs7pyaOXXEU6X5qkaY6jTDfo8NKdQ9omW7RrRlNF_3tbKzuF9_F7L_AhdE9gQQjI5yJbxEDogiTpBZoRzkUkJU8u0QyApJGkDK7RTQjvAJDEIGeozHTjyk73zrfYW6xbvGl7sx8SU-Nct3W0C2aIa1x0ug0n3_UT3vraNHgXXLvHW_3tjp_HKHcfpnEH72u8Cr07_slbdGV1E8zd_ztHu5dVka2j_O11ky3zqKIx6yPDYmBpRUnMpCitsVZUglNpQZBSV4ybRHMjhI0rKWVqBXA5zJVMGSVMJnSOHqe7B92oUzf83v0or51aL3M1ZgCCpZzzLzLYp8lWnQ-hM_a8QECNVaoiU2OVaqhy0A-TdsaYs0y4kAlQ-gux9G6R</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Calibration of an Integrated Land-Use and Transportation Model Using Maximum-Likelihood Estimation</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Dutta, Parikshit ; Arnaud, Elise ; Prados, Emmanuel ; Saujot, Mathieu</creator><creatorcontrib>Dutta, Parikshit ; Arnaud, Elise ; Prados, Emmanuel ; Saujot, Mathieu</creatorcontrib><description>The focus of this work is calibration of the land-use module of an integrated land-use and transportation model (ILUTM). The calibration task involves estimating key parameters that dictate the output of the land-use module. Hence, an algorithm based on maximum-likelihood estimation (MLE) is developed for calibration. Furthermore, the observed values of the outputs from the land-use module are assumed to admit a Gaussian error. The ILUTM methodology used here is TRANUS which is used to model the city of Grenoble in France. The aforementioned algorithm is then applied to calibrate the land-use module of the Grenoble model. The covariance of the Gaussian error term is assumed to be unknown. It is represented as a function of the land-use module inputs and "hyperparameters.â' The resulting MLE optimization problem has 111 parameters to be estimated, 90 of which are land use parameters and 21 are hyperparameters of the Gaussian covariance kernel. The performance of the proposed calibration methodology is then compared to the traditional calibration techniques used for land use and transportation models, when applied to the Grenoble land-use model. It is observed that the proposed method outperforms the traditional technique when compared based upon a given quantity of interest.</description><identifier>ISSN: 0018-9340</identifier><identifier>EISSN: 1557-9956</identifier><identifier>DOI: 10.1109/TC.2013.168</identifier><identifier>CODEN: ITCOB4</identifier><language>eng</language><publisher>IEEE</publisher><subject>Calibration ; calibration and validation under uncertainty ; Computational modeling ; Computer Science ; Gaussian process modeling ; Gaussian processes ; Integrated land use and transportation ; Maximum likelihood estimation ; Modeling and Simulation ; supervised learning ; Transportation ; Uncertainty ; Urban areas</subject><ispartof>IEEE transactions on computers, 2014-01, Vol.63 (1), p.167-178</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c324t-e42048c312497bfeff7c7539f071bac45e6a5e77f2c9998f70595e7c984314963</citedby><cites>FETCH-LOGICAL-c324t-e42048c312497bfeff7c7539f071bac45e6a5e77f2c9998f70595e7c984314963</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6579603$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,54796</link.rule.ids><backlink>$$Uhttps://inria.hal.science/hal-00748555$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Dutta, Parikshit</creatorcontrib><creatorcontrib>Arnaud, Elise</creatorcontrib><creatorcontrib>Prados, Emmanuel</creatorcontrib><creatorcontrib>Saujot, Mathieu</creatorcontrib><title>Calibration of an Integrated Land-Use and Transportation Model Using Maximum-Likelihood Estimation</title><title>IEEE transactions on computers</title><addtitle>TC</addtitle><description>The focus of this work is calibration of the land-use module of an integrated land-use and transportation model (ILUTM). The calibration task involves estimating key parameters that dictate the output of the land-use module. Hence, an algorithm based on maximum-likelihood estimation (MLE) is developed for calibration. Furthermore, the observed values of the outputs from the land-use module are assumed to admit a Gaussian error. The ILUTM methodology used here is TRANUS which is used to model the city of Grenoble in France. The aforementioned algorithm is then applied to calibrate the land-use module of the Grenoble model. The covariance of the Gaussian error term is assumed to be unknown. It is represented as a function of the land-use module inputs and "hyperparameters.â' The resulting MLE optimization problem has 111 parameters to be estimated, 90 of which are land use parameters and 21 are hyperparameters of the Gaussian covariance kernel. The performance of the proposed calibration methodology is then compared to the traditional calibration techniques used for land use and transportation models, when applied to the Grenoble land-use model. It is observed that the proposed method outperforms the traditional technique when compared based upon a given quantity of interest.</description><subject>Calibration</subject><subject>calibration and validation under uncertainty</subject><subject>Computational modeling</subject><subject>Computer Science</subject><subject>Gaussian process modeling</subject><subject>Gaussian processes</subject><subject>Integrated land use and transportation</subject><subject>Maximum likelihood estimation</subject><subject>Modeling and Simulation</subject><subject>supervised learning</subject><subject>Transportation</subject><subject>Uncertainty</subject><subject>Urban areas</subject><issn>0018-9340</issn><issn>1557-9956</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNo90MFLwzAUBvAgCs7pyaOXXEU6X5qkaY6jTDfo8NKdQ9omW7RrRlNF_3tbKzuF9_F7L_AhdE9gQQjI5yJbxEDogiTpBZoRzkUkJU8u0QyApJGkDK7RTQjvAJDEIGeozHTjyk73zrfYW6xbvGl7sx8SU-Nct3W0C2aIa1x0ug0n3_UT3vraNHgXXLvHW_3tjp_HKHcfpnEH72u8Cr07_slbdGV1E8zd_ztHu5dVka2j_O11ky3zqKIx6yPDYmBpRUnMpCitsVZUglNpQZBSV4ybRHMjhI0rKWVqBXA5zJVMGSVMJnSOHqe7B92oUzf83v0or51aL3M1ZgCCpZzzLzLYp8lWnQ-hM_a8QECNVaoiU2OVaqhy0A-TdsaYs0y4kAlQ-gux9G6R</recordid><startdate>201401</startdate><enddate>201401</enddate><creator>Dutta, Parikshit</creator><creator>Arnaud, Elise</creator><creator>Prados, Emmanuel</creator><creator>Saujot, Mathieu</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope></search><sort><creationdate>201401</creationdate><title>Calibration of an Integrated Land-Use and Transportation Model Using Maximum-Likelihood Estimation</title><author>Dutta, Parikshit ; Arnaud, Elise ; Prados, Emmanuel ; Saujot, Mathieu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c324t-e42048c312497bfeff7c7539f071bac45e6a5e77f2c9998f70595e7c984314963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Calibration</topic><topic>calibration and validation under uncertainty</topic><topic>Computational modeling</topic><topic>Computer Science</topic><topic>Gaussian process modeling</topic><topic>Gaussian processes</topic><topic>Integrated land use and transportation</topic><topic>Maximum likelihood estimation</topic><topic>Modeling and Simulation</topic><topic>supervised learning</topic><topic>Transportation</topic><topic>Uncertainty</topic><topic>Urban areas</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dutta, Parikshit</creatorcontrib><creatorcontrib>Arnaud, Elise</creatorcontrib><creatorcontrib>Prados, Emmanuel</creatorcontrib><creatorcontrib>Saujot, Mathieu</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library Online</collection><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>IEEE transactions on computers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dutta, Parikshit</au><au>Arnaud, Elise</au><au>Prados, Emmanuel</au><au>Saujot, Mathieu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Calibration of an Integrated Land-Use and Transportation Model Using Maximum-Likelihood Estimation</atitle><jtitle>IEEE transactions on computers</jtitle><stitle>TC</stitle><date>2014-01</date><risdate>2014</risdate><volume>63</volume><issue>1</issue><spage>167</spage><epage>178</epage><pages>167-178</pages><issn>0018-9340</issn><eissn>1557-9956</eissn><coden>ITCOB4</coden><abstract>The focus of this work is calibration of the land-use module of an integrated land-use and transportation model (ILUTM). The calibration task involves estimating key parameters that dictate the output of the land-use module. Hence, an algorithm based on maximum-likelihood estimation (MLE) is developed for calibration. Furthermore, the observed values of the outputs from the land-use module are assumed to admit a Gaussian error. The ILUTM methodology used here is TRANUS which is used to model the city of Grenoble in France. The aforementioned algorithm is then applied to calibrate the land-use module of the Grenoble model. The covariance of the Gaussian error term is assumed to be unknown. It is represented as a function of the land-use module inputs and "hyperparameters.â' The resulting MLE optimization problem has 111 parameters to be estimated, 90 of which are land use parameters and 21 are hyperparameters of the Gaussian covariance kernel. The performance of the proposed calibration methodology is then compared to the traditional calibration techniques used for land use and transportation models, when applied to the Grenoble land-use model. It is observed that the proposed method outperforms the traditional technique when compared based upon a given quantity of interest.</abstract><pub>IEEE</pub><doi>10.1109/TC.2013.168</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0018-9340
ispartof IEEE transactions on computers, 2014-01, Vol.63 (1), p.167-178
issn 0018-9340
1557-9956
language eng
recordid cdi_ieee_primary_6579603
source IEEE Electronic Library (IEL) Journals
subjects Calibration
calibration and validation under uncertainty
Computational modeling
Computer Science
Gaussian process modeling
Gaussian processes
Integrated land use and transportation
Maximum likelihood estimation
Modeling and Simulation
supervised learning
Transportation
Uncertainty
Urban areas
title Calibration of an Integrated Land-Use and Transportation Model Using Maximum-Likelihood Estimation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T09%3A55%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Calibration%20of%20an%20Integrated%20Land-Use%20and%20Transportation%20Model%20Using%20Maximum-Likelihood%20Estimation&rft.jtitle=IEEE%20transactions%20on%20computers&rft.au=Dutta,%20Parikshit&rft.date=2014-01&rft.volume=63&rft.issue=1&rft.spage=167&rft.epage=178&rft.pages=167-178&rft.issn=0018-9340&rft.eissn=1557-9956&rft.coden=ITCOB4&rft_id=info:doi/10.1109/TC.2013.168&rft_dat=%3Chal_ieee_%3Eoai_HAL_hal_00748555v1%3C/hal_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c324t-e42048c312497bfeff7c7539f071bac45e6a5e77f2c9998f70595e7c984314963%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6579603&rfr_iscdi=true