Loading…
Calibration of an Integrated Land-Use and Transportation Model Using Maximum-Likelihood Estimation
The focus of this work is calibration of the land-use module of an integrated land-use and transportation model (ILUTM). The calibration task involves estimating key parameters that dictate the output of the land-use module. Hence, an algorithm based on maximum-likelihood estimation (MLE) is develop...
Saved in:
Published in: | IEEE transactions on computers 2014-01, Vol.63 (1), p.167-178 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c324t-e42048c312497bfeff7c7539f071bac45e6a5e77f2c9998f70595e7c984314963 |
---|---|
cites | cdi_FETCH-LOGICAL-c324t-e42048c312497bfeff7c7539f071bac45e6a5e77f2c9998f70595e7c984314963 |
container_end_page | 178 |
container_issue | 1 |
container_start_page | 167 |
container_title | IEEE transactions on computers |
container_volume | 63 |
creator | Dutta, Parikshit Arnaud, Elise Prados, Emmanuel Saujot, Mathieu |
description | The focus of this work is calibration of the land-use module of an integrated land-use and transportation model (ILUTM). The calibration task involves estimating key parameters that dictate the output of the land-use module. Hence, an algorithm based on maximum-likelihood estimation (MLE) is developed for calibration. Furthermore, the observed values of the outputs from the land-use module are assumed to admit a Gaussian error. The ILUTM methodology used here is TRANUS which is used to model the city of Grenoble in France. The aforementioned algorithm is then applied to calibrate the land-use module of the Grenoble model. The covariance of the Gaussian error term is assumed to be unknown. It is represented as a function of the land-use module inputs and "hyperparameters.â' The resulting MLE optimization problem has 111 parameters to be estimated, 90 of which are land use parameters and 21 are hyperparameters of the Gaussian covariance kernel. The performance of the proposed calibration methodology is then compared to the traditional calibration techniques used for land use and transportation models, when applied to the Grenoble land-use model. It is observed that the proposed method outperforms the traditional technique when compared based upon a given quantity of interest. |
doi_str_mv | 10.1109/TC.2013.168 |
format | article |
fullrecord | <record><control><sourceid>hal_ieee_</sourceid><recordid>TN_cdi_ieee_primary_6579603</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6579603</ieee_id><sourcerecordid>oai_HAL_hal_00748555v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c324t-e42048c312497bfeff7c7539f071bac45e6a5e77f2c9998f70595e7c984314963</originalsourceid><addsrcrecordid>eNo90MFLwzAUBvAgCs7pyaOXXEU6X5qkaY6jTDfo8NKdQ9omW7RrRlNF_3tbKzuF9_F7L_AhdE9gQQjI5yJbxEDogiTpBZoRzkUkJU8u0QyApJGkDK7RTQjvAJDEIGeozHTjyk73zrfYW6xbvGl7sx8SU-Nct3W0C2aIa1x0ug0n3_UT3vraNHgXXLvHW_3tjp_HKHcfpnEH72u8Cr07_slbdGV1E8zd_ztHu5dVka2j_O11ky3zqKIx6yPDYmBpRUnMpCitsVZUglNpQZBSV4ybRHMjhI0rKWVqBXA5zJVMGSVMJnSOHqe7B92oUzf83v0or51aL3M1ZgCCpZzzLzLYp8lWnQ-hM_a8QECNVaoiU2OVaqhy0A-TdsaYs0y4kAlQ-gux9G6R</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Calibration of an Integrated Land-Use and Transportation Model Using Maximum-Likelihood Estimation</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Dutta, Parikshit ; Arnaud, Elise ; Prados, Emmanuel ; Saujot, Mathieu</creator><creatorcontrib>Dutta, Parikshit ; Arnaud, Elise ; Prados, Emmanuel ; Saujot, Mathieu</creatorcontrib><description>The focus of this work is calibration of the land-use module of an integrated land-use and transportation model (ILUTM). The calibration task involves estimating key parameters that dictate the output of the land-use module. Hence, an algorithm based on maximum-likelihood estimation (MLE) is developed for calibration. Furthermore, the observed values of the outputs from the land-use module are assumed to admit a Gaussian error. The ILUTM methodology used here is TRANUS which is used to model the city of Grenoble in France. The aforementioned algorithm is then applied to calibrate the land-use module of the Grenoble model. The covariance of the Gaussian error term is assumed to be unknown. It is represented as a function of the land-use module inputs and "hyperparameters.â' The resulting MLE optimization problem has 111 parameters to be estimated, 90 of which are land use parameters and 21 are hyperparameters of the Gaussian covariance kernel. The performance of the proposed calibration methodology is then compared to the traditional calibration techniques used for land use and transportation models, when applied to the Grenoble land-use model. It is observed that the proposed method outperforms the traditional technique when compared based upon a given quantity of interest.</description><identifier>ISSN: 0018-9340</identifier><identifier>EISSN: 1557-9956</identifier><identifier>DOI: 10.1109/TC.2013.168</identifier><identifier>CODEN: ITCOB4</identifier><language>eng</language><publisher>IEEE</publisher><subject>Calibration ; calibration and validation under uncertainty ; Computational modeling ; Computer Science ; Gaussian process modeling ; Gaussian processes ; Integrated land use and transportation ; Maximum likelihood estimation ; Modeling and Simulation ; supervised learning ; Transportation ; Uncertainty ; Urban areas</subject><ispartof>IEEE transactions on computers, 2014-01, Vol.63 (1), p.167-178</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c324t-e42048c312497bfeff7c7539f071bac45e6a5e77f2c9998f70595e7c984314963</citedby><cites>FETCH-LOGICAL-c324t-e42048c312497bfeff7c7539f071bac45e6a5e77f2c9998f70595e7c984314963</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6579603$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,54796</link.rule.ids><backlink>$$Uhttps://inria.hal.science/hal-00748555$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Dutta, Parikshit</creatorcontrib><creatorcontrib>Arnaud, Elise</creatorcontrib><creatorcontrib>Prados, Emmanuel</creatorcontrib><creatorcontrib>Saujot, Mathieu</creatorcontrib><title>Calibration of an Integrated Land-Use and Transportation Model Using Maximum-Likelihood Estimation</title><title>IEEE transactions on computers</title><addtitle>TC</addtitle><description>The focus of this work is calibration of the land-use module of an integrated land-use and transportation model (ILUTM). The calibration task involves estimating key parameters that dictate the output of the land-use module. Hence, an algorithm based on maximum-likelihood estimation (MLE) is developed for calibration. Furthermore, the observed values of the outputs from the land-use module are assumed to admit a Gaussian error. The ILUTM methodology used here is TRANUS which is used to model the city of Grenoble in France. The aforementioned algorithm is then applied to calibrate the land-use module of the Grenoble model. The covariance of the Gaussian error term is assumed to be unknown. It is represented as a function of the land-use module inputs and "hyperparameters.â' The resulting MLE optimization problem has 111 parameters to be estimated, 90 of which are land use parameters and 21 are hyperparameters of the Gaussian covariance kernel. The performance of the proposed calibration methodology is then compared to the traditional calibration techniques used for land use and transportation models, when applied to the Grenoble land-use model. It is observed that the proposed method outperforms the traditional technique when compared based upon a given quantity of interest.</description><subject>Calibration</subject><subject>calibration and validation under uncertainty</subject><subject>Computational modeling</subject><subject>Computer Science</subject><subject>Gaussian process modeling</subject><subject>Gaussian processes</subject><subject>Integrated land use and transportation</subject><subject>Maximum likelihood estimation</subject><subject>Modeling and Simulation</subject><subject>supervised learning</subject><subject>Transportation</subject><subject>Uncertainty</subject><subject>Urban areas</subject><issn>0018-9340</issn><issn>1557-9956</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNo90MFLwzAUBvAgCs7pyaOXXEU6X5qkaY6jTDfo8NKdQ9omW7RrRlNF_3tbKzuF9_F7L_AhdE9gQQjI5yJbxEDogiTpBZoRzkUkJU8u0QyApJGkDK7RTQjvAJDEIGeozHTjyk73zrfYW6xbvGl7sx8SU-Nct3W0C2aIa1x0ug0n3_UT3vraNHgXXLvHW_3tjp_HKHcfpnEH72u8Cr07_slbdGV1E8zd_ztHu5dVka2j_O11ky3zqKIx6yPDYmBpRUnMpCitsVZUglNpQZBSV4ybRHMjhI0rKWVqBXA5zJVMGSVMJnSOHqe7B92oUzf83v0or51aL3M1ZgCCpZzzLzLYp8lWnQ-hM_a8QECNVaoiU2OVaqhy0A-TdsaYs0y4kAlQ-gux9G6R</recordid><startdate>201401</startdate><enddate>201401</enddate><creator>Dutta, Parikshit</creator><creator>Arnaud, Elise</creator><creator>Prados, Emmanuel</creator><creator>Saujot, Mathieu</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope></search><sort><creationdate>201401</creationdate><title>Calibration of an Integrated Land-Use and Transportation Model Using Maximum-Likelihood Estimation</title><author>Dutta, Parikshit ; Arnaud, Elise ; Prados, Emmanuel ; Saujot, Mathieu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c324t-e42048c312497bfeff7c7539f071bac45e6a5e77f2c9998f70595e7c984314963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Calibration</topic><topic>calibration and validation under uncertainty</topic><topic>Computational modeling</topic><topic>Computer Science</topic><topic>Gaussian process modeling</topic><topic>Gaussian processes</topic><topic>Integrated land use and transportation</topic><topic>Maximum likelihood estimation</topic><topic>Modeling and Simulation</topic><topic>supervised learning</topic><topic>Transportation</topic><topic>Uncertainty</topic><topic>Urban areas</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dutta, Parikshit</creatorcontrib><creatorcontrib>Arnaud, Elise</creatorcontrib><creatorcontrib>Prados, Emmanuel</creatorcontrib><creatorcontrib>Saujot, Mathieu</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library Online</collection><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>IEEE transactions on computers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dutta, Parikshit</au><au>Arnaud, Elise</au><au>Prados, Emmanuel</au><au>Saujot, Mathieu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Calibration of an Integrated Land-Use and Transportation Model Using Maximum-Likelihood Estimation</atitle><jtitle>IEEE transactions on computers</jtitle><stitle>TC</stitle><date>2014-01</date><risdate>2014</risdate><volume>63</volume><issue>1</issue><spage>167</spage><epage>178</epage><pages>167-178</pages><issn>0018-9340</issn><eissn>1557-9956</eissn><coden>ITCOB4</coden><abstract>The focus of this work is calibration of the land-use module of an integrated land-use and transportation model (ILUTM). The calibration task involves estimating key parameters that dictate the output of the land-use module. Hence, an algorithm based on maximum-likelihood estimation (MLE) is developed for calibration. Furthermore, the observed values of the outputs from the land-use module are assumed to admit a Gaussian error. The ILUTM methodology used here is TRANUS which is used to model the city of Grenoble in France. The aforementioned algorithm is then applied to calibrate the land-use module of the Grenoble model. The covariance of the Gaussian error term is assumed to be unknown. It is represented as a function of the land-use module inputs and "hyperparameters.â' The resulting MLE optimization problem has 111 parameters to be estimated, 90 of which are land use parameters and 21 are hyperparameters of the Gaussian covariance kernel. The performance of the proposed calibration methodology is then compared to the traditional calibration techniques used for land use and transportation models, when applied to the Grenoble land-use model. It is observed that the proposed method outperforms the traditional technique when compared based upon a given quantity of interest.</abstract><pub>IEEE</pub><doi>10.1109/TC.2013.168</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0018-9340 |
ispartof | IEEE transactions on computers, 2014-01, Vol.63 (1), p.167-178 |
issn | 0018-9340 1557-9956 |
language | eng |
recordid | cdi_ieee_primary_6579603 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Calibration calibration and validation under uncertainty Computational modeling Computer Science Gaussian process modeling Gaussian processes Integrated land use and transportation Maximum likelihood estimation Modeling and Simulation supervised learning Transportation Uncertainty Urban areas |
title | Calibration of an Integrated Land-Use and Transportation Model Using Maximum-Likelihood Estimation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T09%3A55%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Calibration%20of%20an%20Integrated%20Land-Use%20and%20Transportation%20Model%20Using%20Maximum-Likelihood%20Estimation&rft.jtitle=IEEE%20transactions%20on%20computers&rft.au=Dutta,%20Parikshit&rft.date=2014-01&rft.volume=63&rft.issue=1&rft.spage=167&rft.epage=178&rft.pages=167-178&rft.issn=0018-9340&rft.eissn=1557-9956&rft.coden=ITCOB4&rft_id=info:doi/10.1109/TC.2013.168&rft_dat=%3Chal_ieee_%3Eoai_HAL_hal_00748555v1%3C/hal_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c324t-e42048c312497bfeff7c7539f071bac45e6a5e77f2c9998f70595e7c984314963%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6579603&rfr_iscdi=true |