Loading…
Unsupervised, smooth training of feed-forward neural networks for mismatch compensation
We present a maximum likelihood technique for training feedforward neural networks. The proposed technique is completely unsupervised; hence it eliminates the need for having target values for each input. Thus stereo databases are no longer required for learning nonlinear distortions under adverse c...
Saved in:
Main Authors: | , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 489 |
container_issue | |
container_start_page | 482 |
container_title | |
container_volume | |
creator | Surendran, A.C. Chin-Hui Lee Rahim, M. |
description | We present a maximum likelihood technique for training feedforward neural networks. The proposed technique is completely unsupervised; hence it eliminates the need for having target values for each input. Thus stereo databases are no longer required for learning nonlinear distortions under adverse conditions in speech recognition applications. We show that this technique is guaranteed to converge smoothly to the local maxima, and provides a more meaningful metric in speech recognition applications than the traditional mean square error. We apply the technique to model compensation to reduce the mismatch between training and testing in speech recognition applications and show that this data driven technique can be used under a wide variety of conditions without prior knowledge of the mismatch. |
doi_str_mv | 10.1109/ASRU.1997.659127 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_659127</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>659127</ieee_id><sourcerecordid>659127</sourcerecordid><originalsourceid>FETCH-LOGICAL-i104t-43d080eb010e76990957d38391105ccd7e97ff347e8358d6c46ea223bac273623</originalsourceid><addsrcrecordid>eNotj81KAzEYRQMiqLV7cZUHcMZk8r8sRa1QENTBZUmTb2y0MxmS1OLbO1Dv5sBdHDgI3VBSU0rM_eLtta2pMaqWwtBGnaErojRhTBrNL9A85y8yjQtBtbhEH-2QDyOkn5DB3-Hcx1h2uCQbhjB84tjhDsBXXUxHmzwe4JDsfkI5xvSd8fTjPuTeFrfDLvYjDNmWEIdrdN7ZfYb5P2eofXx4X66q9cvT83KxrgIlvFSceaIJbAkloKQxxAjlmWZmahHOeQVGdR3jCjQT2kvHJdimYVvrGsVkw2bo9uQNALAZU-ht-t2c0tkf_W5QDA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Unsupervised, smooth training of feed-forward neural networks for mismatch compensation</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Surendran, A.C. ; Chin-Hui Lee ; Rahim, M.</creator><creatorcontrib>Surendran, A.C. ; Chin-Hui Lee ; Rahim, M.</creatorcontrib><description>We present a maximum likelihood technique for training feedforward neural networks. The proposed technique is completely unsupervised; hence it eliminates the need for having target values for each input. Thus stereo databases are no longer required for learning nonlinear distortions under adverse conditions in speech recognition applications. We show that this technique is guaranteed to converge smoothly to the local maxima, and provides a more meaningful metric in speech recognition applications than the traditional mean square error. We apply the technique to model compensation to reduce the mismatch between training and testing in speech recognition applications and show that this data driven technique can be used under a wide variety of conditions without prior knowledge of the mismatch.</description><identifier>ISBN: 0780336984</identifier><identifier>ISBN: 9780780336988</identifier><identifier>DOI: 10.1109/ASRU.1997.659127</identifier><language>eng</language><publisher>IEEE</publisher><subject>Artificial neural networks ; Convergence ; Equations ; Feedforward neural networks ; Feedforward systems ; Neural networks ; Speech recognition ; Testing ; Training data</subject><ispartof>1997 IEEE Workshop on Automatic Speech Recognition and Understanding Proceedings, 1997, p.482-489</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/659127$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2056,4047,4048,27923,54918</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/659127$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Surendran, A.C.</creatorcontrib><creatorcontrib>Chin-Hui Lee</creatorcontrib><creatorcontrib>Rahim, M.</creatorcontrib><title>Unsupervised, smooth training of feed-forward neural networks for mismatch compensation</title><title>1997 IEEE Workshop on Automatic Speech Recognition and Understanding Proceedings</title><addtitle>ASRU</addtitle><description>We present a maximum likelihood technique for training feedforward neural networks. The proposed technique is completely unsupervised; hence it eliminates the need for having target values for each input. Thus stereo databases are no longer required for learning nonlinear distortions under adverse conditions in speech recognition applications. We show that this technique is guaranteed to converge smoothly to the local maxima, and provides a more meaningful metric in speech recognition applications than the traditional mean square error. We apply the technique to model compensation to reduce the mismatch between training and testing in speech recognition applications and show that this data driven technique can be used under a wide variety of conditions without prior knowledge of the mismatch.</description><subject>Artificial neural networks</subject><subject>Convergence</subject><subject>Equations</subject><subject>Feedforward neural networks</subject><subject>Feedforward systems</subject><subject>Neural networks</subject><subject>Speech recognition</subject><subject>Testing</subject><subject>Training data</subject><isbn>0780336984</isbn><isbn>9780780336988</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>1997</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotj81KAzEYRQMiqLV7cZUHcMZk8r8sRa1QENTBZUmTb2y0MxmS1OLbO1Dv5sBdHDgI3VBSU0rM_eLtta2pMaqWwtBGnaErojRhTBrNL9A85y8yjQtBtbhEH-2QDyOkn5DB3-Hcx1h2uCQbhjB84tjhDsBXXUxHmzwe4JDsfkI5xvSd8fTjPuTeFrfDLvYjDNmWEIdrdN7ZfYb5P2eofXx4X66q9cvT83KxrgIlvFSceaIJbAkloKQxxAjlmWZmahHOeQVGdR3jCjQT2kvHJdimYVvrGsVkw2bo9uQNALAZU-ht-t2c0tkf_W5QDA</recordid><startdate>1997</startdate><enddate>1997</enddate><creator>Surendran, A.C.</creator><creator>Chin-Hui Lee</creator><creator>Rahim, M.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>1997</creationdate><title>Unsupervised, smooth training of feed-forward neural networks for mismatch compensation</title><author>Surendran, A.C. ; Chin-Hui Lee ; Rahim, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i104t-43d080eb010e76990957d38391105ccd7e97ff347e8358d6c46ea223bac273623</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>1997</creationdate><topic>Artificial neural networks</topic><topic>Convergence</topic><topic>Equations</topic><topic>Feedforward neural networks</topic><topic>Feedforward systems</topic><topic>Neural networks</topic><topic>Speech recognition</topic><topic>Testing</topic><topic>Training data</topic><toplevel>online_resources</toplevel><creatorcontrib>Surendran, A.C.</creatorcontrib><creatorcontrib>Chin-Hui Lee</creatorcontrib><creatorcontrib>Rahim, M.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Surendran, A.C.</au><au>Chin-Hui Lee</au><au>Rahim, M.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Unsupervised, smooth training of feed-forward neural networks for mismatch compensation</atitle><btitle>1997 IEEE Workshop on Automatic Speech Recognition and Understanding Proceedings</btitle><stitle>ASRU</stitle><date>1997</date><risdate>1997</risdate><spage>482</spage><epage>489</epage><pages>482-489</pages><isbn>0780336984</isbn><isbn>9780780336988</isbn><abstract>We present a maximum likelihood technique for training feedforward neural networks. The proposed technique is completely unsupervised; hence it eliminates the need for having target values for each input. Thus stereo databases are no longer required for learning nonlinear distortions under adverse conditions in speech recognition applications. We show that this technique is guaranteed to converge smoothly to the local maxima, and provides a more meaningful metric in speech recognition applications than the traditional mean square error. We apply the technique to model compensation to reduce the mismatch between training and testing in speech recognition applications and show that this data driven technique can be used under a wide variety of conditions without prior knowledge of the mismatch.</abstract><pub>IEEE</pub><doi>10.1109/ASRU.1997.659127</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 0780336984 |
ispartof | 1997 IEEE Workshop on Automatic Speech Recognition and Understanding Proceedings, 1997, p.482-489 |
issn | |
language | eng |
recordid | cdi_ieee_primary_659127 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Artificial neural networks Convergence Equations Feedforward neural networks Feedforward systems Neural networks Speech recognition Testing Training data |
title | Unsupervised, smooth training of feed-forward neural networks for mismatch compensation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T11%3A47%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Unsupervised,%20smooth%20training%20of%20feed-forward%20neural%20networks%20for%20mismatch%20compensation&rft.btitle=1997%20IEEE%20Workshop%20on%20Automatic%20Speech%20Recognition%20and%20Understanding%20Proceedings&rft.au=Surendran,%20A.C.&rft.date=1997&rft.spage=482&rft.epage=489&rft.pages=482-489&rft.isbn=0780336984&rft.isbn_list=9780780336988&rft_id=info:doi/10.1109/ASRU.1997.659127&rft_dat=%3Cieee_6IE%3E659127%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i104t-43d080eb010e76990957d38391105ccd7e97ff347e8358d6c46ea223bac273623%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=659127&rfr_iscdi=true |