Loading…
Silicon Nanotweezers with a microfluidic cavity for the real time characterization of DNA damage under therapeutic radiation beams
We report the biomechanical characterization of λ-DNA bundle exposed to a therapeutic radiation beam by silicon Nanotweezers. The micromechanical device endures the harsh environment of radiation beams, and still retains molecular-level detection accuracy. The real-time DNA bundle degradation is obs...
Saved in:
Main Authors: | , , , , , , , , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We report the biomechanical characterization of λ-DNA bundle exposed to a therapeutic radiation beam by silicon Nanotweezers. The micromechanical device endures the harsh environment of radiation beams, and still retains molecular-level detection accuracy. The real-time DNA bundle degradation is observed in terms of biomechanical stiffness and viscosity reduction, both in air and in solution. These results pave the way for both fundamental and clinical studies of DNA degradation mechanisms under ionizing radiation for improved tumor treatment. |
---|---|
ISSN: | 1094-687X 1558-4615 2694-0604 |
DOI: | 10.1109/EMBC.2013.6611123 |