Loading…
Alignment-free cancelable iris biometric templates based on adaptive bloom filters
Biometric characteristics are largely immutable, i.e. unprotected storage of biometric data provokes serious privacy threats, e.g. identity theft, limited re-newability, or cross-matching. In accordance with the ISO/IEC 24745 standard, technologies of cancelable biometrics offer solutions to biometr...
Saved in:
Main Authors: | , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Biometric characteristics are largely immutable, i.e. unprotected storage of biometric data provokes serious privacy threats, e.g. identity theft, limited re-newability, or cross-matching. In accordance with the ISO/IEC 24745 standard, technologies of cancelable biometrics offer solutions to biometric information protection by obscuring biometric signal in a non-invertible manner, while biometric comparisons are still feasible in the transformed domain. In the presented work alignment-free cancelable iris biometrics based on adaptive Bloom filters are proposed. Bloom filter-based representations of binary biometric templates (iris-codes) enable an efficient alignment-invariant biometric comparison while a successive mapping of parts of a binary biometric template to a Bloom filter represents an irreversible transform. In experiments, which are carried out on the CASIA - v 3 iris database, it is demonstrated that the proposed system maintains biometric performance for diverse iris recognition algorithms, protecting biometric templates at high security levels. |
---|---|
ISSN: | 2376-4201 |
DOI: | 10.1109/ICB.2013.6612976 |