Loading…

The research on topic detection based on multi-models and multi-characteristics

In this paper, a new approach was proposed for the topic detection, which combined the multi-models and multi-characteristics, entity information similarities were researched as features for support vector machine model (SVM) by us, for example, the content similarity, time similarity and location s...

Full description

Saved in:
Bibliographic Details
Main Authors: Zhang Su-xiang, Li Ya-xi, Wang Xiu-li, Xie Lin-yan
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 598
container_issue
container_start_page 595
container_title
container_volume
creator Zhang Su-xiang
Li Ya-xi
Wang Xiu-li
Xie Lin-yan
description In this paper, a new approach was proposed for the topic detection, which combined the multi-models and multi-characteristics, entity information similarities were researched as features for support vector machine model (SVM) by us, for example, the content similarity, time similarity and location similarity methods can be proposed respectively, the Bayesian model also can be discussed to obtain the atomic characteristics in this paper. Except this features, the expert knowledge base has been studied to solve the difficult classification problem. The experimental results show that the approach combined the statistical model with expert rule base is effective.
doi_str_mv 10.1109/ICSESS.2013.6615379
format conference_proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6615379</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6615379</ieee_id><sourcerecordid>6615379</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-7bbefb6c3947a6b9d3e78505215f906a024778ec33cc5f808c3366c5f4832d9a3</originalsourceid><addsrcrecordid>eNo1kE1OwzAUhI0AiVJygm5ygYRnO_HPEkWFVqrURbKvHOdFMUqayjYLbk8QYTXfzEizGEJ2FHJKQb8eq3pf1zkDynMhaMmlviPPtBCSF1qr4p4kWqp_L-GBbBhnMoNSiSeShPAJAIwJvdQbcm4GTD0GNN4O6XxN43xzNu0woo1u8a0J2P0W09cYXTbNHY4hNdduDexgvLERvQvR2fBCHnszBkxW3ZLmfd9Uh-x0_jhWb6fMaYiZbFvsW2G5LqQRre44SlVCyWjZaxAGWCGlQsu5tWWvQC0kxIKF4qzThm_J7m_WIeLl5t1k_PdlvYP_AOErUks</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>The research on topic detection based on multi-models and multi-characteristics</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Zhang Su-xiang ; Li Ya-xi ; Wang Xiu-li ; Xie Lin-yan</creator><creatorcontrib>Zhang Su-xiang ; Li Ya-xi ; Wang Xiu-li ; Xie Lin-yan</creatorcontrib><description>In this paper, a new approach was proposed for the topic detection, which combined the multi-models and multi-characteristics, entity information similarities were researched as features for support vector machine model (SVM) by us, for example, the content similarity, time similarity and location similarity methods can be proposed respectively, the Bayesian model also can be discussed to obtain the atomic characteristics in this paper. Except this features, the expert knowledge base has been studied to solve the difficult classification problem. The experimental results show that the approach combined the statistical model with expert rule base is effective.</description><identifier>ISSN: 2327-0586</identifier><identifier>ISBN: 9781467349970</identifier><identifier>ISBN: 1467349976</identifier><identifier>EISBN: 1467349984</identifier><identifier>EISBN: 9781467350006</identifier><identifier>EISBN: 1467350001</identifier><identifier>EISBN: 9781467349987</identifier><identifier>DOI: 10.1109/ICSESS.2013.6615379</identifier><language>eng</language><publisher>IEEE</publisher><subject>clustering ; entity information similarity ; feature selection ; Support vector machine classification ; support vector model ; Testing</subject><ispartof>2013 IEEE 4th International Conference on Software Engineering and Service Science, 2013, p.595-598</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6615379$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2056,27924,54554,54919,54931</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6615379$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhang Su-xiang</creatorcontrib><creatorcontrib>Li Ya-xi</creatorcontrib><creatorcontrib>Wang Xiu-li</creatorcontrib><creatorcontrib>Xie Lin-yan</creatorcontrib><title>The research on topic detection based on multi-models and multi-characteristics</title><title>2013 IEEE 4th International Conference on Software Engineering and Service Science</title><addtitle>ICSESS</addtitle><description>In this paper, a new approach was proposed for the topic detection, which combined the multi-models and multi-characteristics, entity information similarities were researched as features for support vector machine model (SVM) by us, for example, the content similarity, time similarity and location similarity methods can be proposed respectively, the Bayesian model also can be discussed to obtain the atomic characteristics in this paper. Except this features, the expert knowledge base has been studied to solve the difficult classification problem. The experimental results show that the approach combined the statistical model with expert rule base is effective.</description><subject>clustering</subject><subject>entity information similarity</subject><subject>feature selection</subject><subject>Support vector machine classification</subject><subject>support vector model</subject><subject>Testing</subject><issn>2327-0586</issn><isbn>9781467349970</isbn><isbn>1467349976</isbn><isbn>1467349984</isbn><isbn>9781467350006</isbn><isbn>1467350001</isbn><isbn>9781467349987</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2013</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo1kE1OwzAUhI0AiVJygm5ygYRnO_HPEkWFVqrURbKvHOdFMUqayjYLbk8QYTXfzEizGEJ2FHJKQb8eq3pf1zkDynMhaMmlviPPtBCSF1qr4p4kWqp_L-GBbBhnMoNSiSeShPAJAIwJvdQbcm4GTD0GNN4O6XxN43xzNu0woo1u8a0J2P0W09cYXTbNHY4hNdduDexgvLERvQvR2fBCHnszBkxW3ZLmfd9Uh-x0_jhWb6fMaYiZbFvsW2G5LqQRre44SlVCyWjZaxAGWCGlQsu5tWWvQC0kxIKF4qzThm_J7m_WIeLl5t1k_PdlvYP_AOErUks</recordid><startdate>201305</startdate><enddate>201305</enddate><creator>Zhang Su-xiang</creator><creator>Li Ya-xi</creator><creator>Wang Xiu-li</creator><creator>Xie Lin-yan</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201305</creationdate><title>The research on topic detection based on multi-models and multi-characteristics</title><author>Zhang Su-xiang ; Li Ya-xi ; Wang Xiu-li ; Xie Lin-yan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-7bbefb6c3947a6b9d3e78505215f906a024778ec33cc5f808c3366c5f4832d9a3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2013</creationdate><topic>clustering</topic><topic>entity information similarity</topic><topic>feature selection</topic><topic>Support vector machine classification</topic><topic>support vector model</topic><topic>Testing</topic><toplevel>online_resources</toplevel><creatorcontrib>Zhang Su-xiang</creatorcontrib><creatorcontrib>Li Ya-xi</creatorcontrib><creatorcontrib>Wang Xiu-li</creatorcontrib><creatorcontrib>Xie Lin-yan</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhang Su-xiang</au><au>Li Ya-xi</au><au>Wang Xiu-li</au><au>Xie Lin-yan</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>The research on topic detection based on multi-models and multi-characteristics</atitle><btitle>2013 IEEE 4th International Conference on Software Engineering and Service Science</btitle><stitle>ICSESS</stitle><date>2013-05</date><risdate>2013</risdate><spage>595</spage><epage>598</epage><pages>595-598</pages><issn>2327-0586</issn><isbn>9781467349970</isbn><isbn>1467349976</isbn><eisbn>1467349984</eisbn><eisbn>9781467350006</eisbn><eisbn>1467350001</eisbn><eisbn>9781467349987</eisbn><abstract>In this paper, a new approach was proposed for the topic detection, which combined the multi-models and multi-characteristics, entity information similarities were researched as features for support vector machine model (SVM) by us, for example, the content similarity, time similarity and location similarity methods can be proposed respectively, the Bayesian model also can be discussed to obtain the atomic characteristics in this paper. Except this features, the expert knowledge base has been studied to solve the difficult classification problem. The experimental results show that the approach combined the statistical model with expert rule base is effective.</abstract><pub>IEEE</pub><doi>10.1109/ICSESS.2013.6615379</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2327-0586
ispartof 2013 IEEE 4th International Conference on Software Engineering and Service Science, 2013, p.595-598
issn 2327-0586
language eng
recordid cdi_ieee_primary_6615379
source IEEE Electronic Library (IEL) Conference Proceedings
subjects clustering
entity information similarity
feature selection
Support vector machine classification
support vector model
Testing
title The research on topic detection based on multi-models and multi-characteristics
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T01%3A18%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=The%20research%20on%20topic%20detection%20based%20on%20multi-models%20and%20multi-characteristics&rft.btitle=2013%20IEEE%204th%20International%20Conference%20on%20Software%20Engineering%20and%20Service%20Science&rft.au=Zhang%20Su-xiang&rft.date=2013-05&rft.spage=595&rft.epage=598&rft.pages=595-598&rft.issn=2327-0586&rft.isbn=9781467349970&rft.isbn_list=1467349976&rft_id=info:doi/10.1109/ICSESS.2013.6615379&rft.eisbn=1467349984&rft.eisbn_list=9781467350006&rft.eisbn_list=1467350001&rft.eisbn_list=9781467349987&rft_dat=%3Cieee_6IE%3E6615379%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i90t-7bbefb6c3947a6b9d3e78505215f906a024778ec33cc5f808c3366c5f4832d9a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6615379&rfr_iscdi=true