Loading…
The research on topic detection based on multi-models and multi-characteristics
In this paper, a new approach was proposed for the topic detection, which combined the multi-models and multi-characteristics, entity information similarities were researched as features for support vector machine model (SVM) by us, for example, the content similarity, time similarity and location s...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 598 |
container_issue | |
container_start_page | 595 |
container_title | |
container_volume | |
creator | Zhang Su-xiang Li Ya-xi Wang Xiu-li Xie Lin-yan |
description | In this paper, a new approach was proposed for the topic detection, which combined the multi-models and multi-characteristics, entity information similarities were researched as features for support vector machine model (SVM) by us, for example, the content similarity, time similarity and location similarity methods can be proposed respectively, the Bayesian model also can be discussed to obtain the atomic characteristics in this paper. Except this features, the expert knowledge base has been studied to solve the difficult classification problem. The experimental results show that the approach combined the statistical model with expert rule base is effective. |
doi_str_mv | 10.1109/ICSESS.2013.6615379 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6615379</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6615379</ieee_id><sourcerecordid>6615379</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-7bbefb6c3947a6b9d3e78505215f906a024778ec33cc5f808c3366c5f4832d9a3</originalsourceid><addsrcrecordid>eNo1kE1OwzAUhI0AiVJygm5ygYRnO_HPEkWFVqrURbKvHOdFMUqayjYLbk8QYTXfzEizGEJ2FHJKQb8eq3pf1zkDynMhaMmlviPPtBCSF1qr4p4kWqp_L-GBbBhnMoNSiSeShPAJAIwJvdQbcm4GTD0GNN4O6XxN43xzNu0woo1u8a0J2P0W09cYXTbNHY4hNdduDexgvLERvQvR2fBCHnszBkxW3ZLmfd9Uh-x0_jhWb6fMaYiZbFvsW2G5LqQRre44SlVCyWjZaxAGWCGlQsu5tWWvQC0kxIKF4qzThm_J7m_WIeLl5t1k_PdlvYP_AOErUks</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>The research on topic detection based on multi-models and multi-characteristics</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Zhang Su-xiang ; Li Ya-xi ; Wang Xiu-li ; Xie Lin-yan</creator><creatorcontrib>Zhang Su-xiang ; Li Ya-xi ; Wang Xiu-li ; Xie Lin-yan</creatorcontrib><description>In this paper, a new approach was proposed for the topic detection, which combined the multi-models and multi-characteristics, entity information similarities were researched as features for support vector machine model (SVM) by us, for example, the content similarity, time similarity and location similarity methods can be proposed respectively, the Bayesian model also can be discussed to obtain the atomic characteristics in this paper. Except this features, the expert knowledge base has been studied to solve the difficult classification problem. The experimental results show that the approach combined the statistical model with expert rule base is effective.</description><identifier>ISSN: 2327-0586</identifier><identifier>ISBN: 9781467349970</identifier><identifier>ISBN: 1467349976</identifier><identifier>EISBN: 1467349984</identifier><identifier>EISBN: 9781467350006</identifier><identifier>EISBN: 1467350001</identifier><identifier>EISBN: 9781467349987</identifier><identifier>DOI: 10.1109/ICSESS.2013.6615379</identifier><language>eng</language><publisher>IEEE</publisher><subject>clustering ; entity information similarity ; feature selection ; Support vector machine classification ; support vector model ; Testing</subject><ispartof>2013 IEEE 4th International Conference on Software Engineering and Service Science, 2013, p.595-598</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6615379$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2056,27924,54554,54919,54931</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6615379$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhang Su-xiang</creatorcontrib><creatorcontrib>Li Ya-xi</creatorcontrib><creatorcontrib>Wang Xiu-li</creatorcontrib><creatorcontrib>Xie Lin-yan</creatorcontrib><title>The research on topic detection based on multi-models and multi-characteristics</title><title>2013 IEEE 4th International Conference on Software Engineering and Service Science</title><addtitle>ICSESS</addtitle><description>In this paper, a new approach was proposed for the topic detection, which combined the multi-models and multi-characteristics, entity information similarities were researched as features for support vector machine model (SVM) by us, for example, the content similarity, time similarity and location similarity methods can be proposed respectively, the Bayesian model also can be discussed to obtain the atomic characteristics in this paper. Except this features, the expert knowledge base has been studied to solve the difficult classification problem. The experimental results show that the approach combined the statistical model with expert rule base is effective.</description><subject>clustering</subject><subject>entity information similarity</subject><subject>feature selection</subject><subject>Support vector machine classification</subject><subject>support vector model</subject><subject>Testing</subject><issn>2327-0586</issn><isbn>9781467349970</isbn><isbn>1467349976</isbn><isbn>1467349984</isbn><isbn>9781467350006</isbn><isbn>1467350001</isbn><isbn>9781467349987</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2013</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo1kE1OwzAUhI0AiVJygm5ygYRnO_HPEkWFVqrURbKvHOdFMUqayjYLbk8QYTXfzEizGEJ2FHJKQb8eq3pf1zkDynMhaMmlviPPtBCSF1qr4p4kWqp_L-GBbBhnMoNSiSeShPAJAIwJvdQbcm4GTD0GNN4O6XxN43xzNu0woo1u8a0J2P0W09cYXTbNHY4hNdduDexgvLERvQvR2fBCHnszBkxW3ZLmfd9Uh-x0_jhWb6fMaYiZbFvsW2G5LqQRre44SlVCyWjZaxAGWCGlQsu5tWWvQC0kxIKF4qzThm_J7m_WIeLl5t1k_PdlvYP_AOErUks</recordid><startdate>201305</startdate><enddate>201305</enddate><creator>Zhang Su-xiang</creator><creator>Li Ya-xi</creator><creator>Wang Xiu-li</creator><creator>Xie Lin-yan</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201305</creationdate><title>The research on topic detection based on multi-models and multi-characteristics</title><author>Zhang Su-xiang ; Li Ya-xi ; Wang Xiu-li ; Xie Lin-yan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-7bbefb6c3947a6b9d3e78505215f906a024778ec33cc5f808c3366c5f4832d9a3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2013</creationdate><topic>clustering</topic><topic>entity information similarity</topic><topic>feature selection</topic><topic>Support vector machine classification</topic><topic>support vector model</topic><topic>Testing</topic><toplevel>online_resources</toplevel><creatorcontrib>Zhang Su-xiang</creatorcontrib><creatorcontrib>Li Ya-xi</creatorcontrib><creatorcontrib>Wang Xiu-li</creatorcontrib><creatorcontrib>Xie Lin-yan</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhang Su-xiang</au><au>Li Ya-xi</au><au>Wang Xiu-li</au><au>Xie Lin-yan</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>The research on topic detection based on multi-models and multi-characteristics</atitle><btitle>2013 IEEE 4th International Conference on Software Engineering and Service Science</btitle><stitle>ICSESS</stitle><date>2013-05</date><risdate>2013</risdate><spage>595</spage><epage>598</epage><pages>595-598</pages><issn>2327-0586</issn><isbn>9781467349970</isbn><isbn>1467349976</isbn><eisbn>1467349984</eisbn><eisbn>9781467350006</eisbn><eisbn>1467350001</eisbn><eisbn>9781467349987</eisbn><abstract>In this paper, a new approach was proposed for the topic detection, which combined the multi-models and multi-characteristics, entity information similarities were researched as features for support vector machine model (SVM) by us, for example, the content similarity, time similarity and location similarity methods can be proposed respectively, the Bayesian model also can be discussed to obtain the atomic characteristics in this paper. Except this features, the expert knowledge base has been studied to solve the difficult classification problem. The experimental results show that the approach combined the statistical model with expert rule base is effective.</abstract><pub>IEEE</pub><doi>10.1109/ICSESS.2013.6615379</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2327-0586 |
ispartof | 2013 IEEE 4th International Conference on Software Engineering and Service Science, 2013, p.595-598 |
issn | 2327-0586 |
language | eng |
recordid | cdi_ieee_primary_6615379 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | clustering entity information similarity feature selection Support vector machine classification support vector model Testing |
title | The research on topic detection based on multi-models and multi-characteristics |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T01%3A18%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=The%20research%20on%20topic%20detection%20based%20on%20multi-models%20and%20multi-characteristics&rft.btitle=2013%20IEEE%204th%20International%20Conference%20on%20Software%20Engineering%20and%20Service%20Science&rft.au=Zhang%20Su-xiang&rft.date=2013-05&rft.spage=595&rft.epage=598&rft.pages=595-598&rft.issn=2327-0586&rft.isbn=9781467349970&rft.isbn_list=1467349976&rft_id=info:doi/10.1109/ICSESS.2013.6615379&rft.eisbn=1467349984&rft.eisbn_list=9781467350006&rft.eisbn_list=1467350001&rft.eisbn_list=9781467349987&rft_dat=%3Cieee_6IE%3E6615379%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i90t-7bbefb6c3947a6b9d3e78505215f906a024778ec33cc5f808c3366c5f4832d9a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6615379&rfr_iscdi=true |