Loading…
Computing card probabilities in Texas Hold'em
Developing Poker agents that can compete at the level of a human expert can be a challenging endeavor, since agents' strategies must be capable of dealing with hidden information, deception and risk management. A way of addressing this issue is to model opponents' behavior in order to esti...
Saved in:
Main Authors: | , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 6 |
container_issue | |
container_start_page | 1 |
container_title | |
container_volume | |
creator | Teofilo, Luis Filipe Reis, Luis Paulo Lopes Cardoso, Henrique |
description | Developing Poker agents that can compete at the level of a human expert can be a challenging endeavor, since agents' strategies must be capable of dealing with hidden information, deception and risk management. A way of addressing this issue is to model opponents' behavior in order to estimate their game plan and make decisions based on such estimations. In this paper, several hand evaluation and classification techniques are compared and conclusions on their respective applicability and scope are drawn. Also, we suggest improvements on current techniques through Monte Carlo sampling. The current methods to deal with risk management were found to be pertinent concerning the agent's decision-making process; nevertheless future integration of these methods with opponent modeling techniques can greatly improve overall Poker agents' performance. |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6615898</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6615898</ieee_id><sourcerecordid>6615898</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-bc65aacd86798490a154a6ecb18ac6a96d3d1cd0b97add15d88c313796afb3f93</originalsourceid><addsrcrecordid>eNotj01LAzEUAFNQaKn7C7zk5imQNMlL3rEsaoWCl3ouLx8rKbvdZbOC_nsLeprbMLNiDTqPHtEbbaS8Y5udAhDS7dyaNbVepJTKOWsMbphox2H6Wsr1k0eaE5_mMVAofVlKrrxc-Sl_U-WHsU9PeXhg9x31NTf_3LKPl-dTexDH99e3dn8URTm7iBDBEsXkwd0iUJKyhiDHoDxFIISkk4pJBnSUkrLJ-6iVdgjUBd2h3rLHP2_JOZ-nuQw0_5wBlL2N6V9cJD5A</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Computing card probabilities in Texas Hold'em</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Teofilo, Luis Filipe ; Reis, Luis Paulo ; Lopes Cardoso, Henrique</creator><creatorcontrib>Teofilo, Luis Filipe ; Reis, Luis Paulo ; Lopes Cardoso, Henrique</creatorcontrib><description>Developing Poker agents that can compete at the level of a human expert can be a challenging endeavor, since agents' strategies must be capable of dealing with hidden information, deception and risk management. A way of addressing this issue is to model opponents' behavior in order to estimate their game plan and make decisions based on such estimations. In this paper, several hand evaluation and classification techniques are compared and conclusions on their respective applicability and scope are drawn. Also, we suggest improvements on current techniques through Monte Carlo sampling. The current methods to deal with risk management were found to be pertinent concerning the agent's decision-making process; nevertheless future integration of these methods with opponent modeling techniques can greatly improve overall Poker agents' performance.</description><identifier>ISSN: 2166-0727</identifier><identifier>EISBN: 9789899843400</identifier><identifier>EISBN: 9899843407</identifier><language>eng</language><publisher>AISTI</publisher><subject>Communities ; Computational modeling ; Computer Poker ; Educational institutions ; Game state abstraction ; Games ; Incomplete information games ; Indexes ; Opponent modeling ; Poker hand probabilities ; Rivers ; Table lookup ; Texas Hold'em Poker</subject><ispartof>2013 8th Iberian Conference on Information Systems and Technologies (CISTI), 2013, p.1-6</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6615898$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,54555,54920,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6615898$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Teofilo, Luis Filipe</creatorcontrib><creatorcontrib>Reis, Luis Paulo</creatorcontrib><creatorcontrib>Lopes Cardoso, Henrique</creatorcontrib><title>Computing card probabilities in Texas Hold'em</title><title>2013 8th Iberian Conference on Information Systems and Technologies (CISTI)</title><addtitle>CISTI</addtitle><description>Developing Poker agents that can compete at the level of a human expert can be a challenging endeavor, since agents' strategies must be capable of dealing with hidden information, deception and risk management. A way of addressing this issue is to model opponents' behavior in order to estimate their game plan and make decisions based on such estimations. In this paper, several hand evaluation and classification techniques are compared and conclusions on their respective applicability and scope are drawn. Also, we suggest improvements on current techniques through Monte Carlo sampling. The current methods to deal with risk management were found to be pertinent concerning the agent's decision-making process; nevertheless future integration of these methods with opponent modeling techniques can greatly improve overall Poker agents' performance.</description><subject>Communities</subject><subject>Computational modeling</subject><subject>Computer Poker</subject><subject>Educational institutions</subject><subject>Game state abstraction</subject><subject>Games</subject><subject>Incomplete information games</subject><subject>Indexes</subject><subject>Opponent modeling</subject><subject>Poker hand probabilities</subject><subject>Rivers</subject><subject>Table lookup</subject><subject>Texas Hold'em Poker</subject><issn>2166-0727</issn><isbn>9789899843400</isbn><isbn>9899843407</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2013</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotj01LAzEUAFNQaKn7C7zk5imQNMlL3rEsaoWCl3ouLx8rKbvdZbOC_nsLeprbMLNiDTqPHtEbbaS8Y5udAhDS7dyaNbVepJTKOWsMbphox2H6Wsr1k0eaE5_mMVAofVlKrrxc-Sl_U-WHsU9PeXhg9x31NTf_3LKPl-dTexDH99e3dn8URTm7iBDBEsXkwd0iUJKyhiDHoDxFIISkk4pJBnSUkrLJ-6iVdgjUBd2h3rLHP2_JOZ-nuQw0_5wBlL2N6V9cJD5A</recordid><startdate>201306</startdate><enddate>201306</enddate><creator>Teofilo, Luis Filipe</creator><creator>Reis, Luis Paulo</creator><creator>Lopes Cardoso, Henrique</creator><general>AISTI</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201306</creationdate><title>Computing card probabilities in Texas Hold'em</title><author>Teofilo, Luis Filipe ; Reis, Luis Paulo ; Lopes Cardoso, Henrique</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-bc65aacd86798490a154a6ecb18ac6a96d3d1cd0b97add15d88c313796afb3f93</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Communities</topic><topic>Computational modeling</topic><topic>Computer Poker</topic><topic>Educational institutions</topic><topic>Game state abstraction</topic><topic>Games</topic><topic>Incomplete information games</topic><topic>Indexes</topic><topic>Opponent modeling</topic><topic>Poker hand probabilities</topic><topic>Rivers</topic><topic>Table lookup</topic><topic>Texas Hold'em Poker</topic><toplevel>online_resources</toplevel><creatorcontrib>Teofilo, Luis Filipe</creatorcontrib><creatorcontrib>Reis, Luis Paulo</creatorcontrib><creatorcontrib>Lopes Cardoso, Henrique</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Teofilo, Luis Filipe</au><au>Reis, Luis Paulo</au><au>Lopes Cardoso, Henrique</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Computing card probabilities in Texas Hold'em</atitle><btitle>2013 8th Iberian Conference on Information Systems and Technologies (CISTI)</btitle><stitle>CISTI</stitle><date>2013-06</date><risdate>2013</risdate><spage>1</spage><epage>6</epage><pages>1-6</pages><issn>2166-0727</issn><eisbn>9789899843400</eisbn><eisbn>9899843407</eisbn><abstract>Developing Poker agents that can compete at the level of a human expert can be a challenging endeavor, since agents' strategies must be capable of dealing with hidden information, deception and risk management. A way of addressing this issue is to model opponents' behavior in order to estimate their game plan and make decisions based on such estimations. In this paper, several hand evaluation and classification techniques are compared and conclusions on their respective applicability and scope are drawn. Also, we suggest improvements on current techniques through Monte Carlo sampling. The current methods to deal with risk management were found to be pertinent concerning the agent's decision-making process; nevertheless future integration of these methods with opponent modeling techniques can greatly improve overall Poker agents' performance.</abstract><pub>AISTI</pub><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2166-0727 |
ispartof | 2013 8th Iberian Conference on Information Systems and Technologies (CISTI), 2013, p.1-6 |
issn | 2166-0727 |
language | eng |
recordid | cdi_ieee_primary_6615898 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Communities Computational modeling Computer Poker Educational institutions Game state abstraction Games Incomplete information games Indexes Opponent modeling Poker hand probabilities Rivers Table lookup Texas Hold'em Poker |
title | Computing card probabilities in Texas Hold'em |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T03%3A02%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Computing%20card%20probabilities%20in%20Texas%20Hold'em&rft.btitle=2013%208th%20Iberian%20Conference%20on%20Information%20Systems%20and%20Technologies%20(CISTI)&rft.au=Teofilo,%20Luis%20Filipe&rft.date=2013-06&rft.spage=1&rft.epage=6&rft.pages=1-6&rft.issn=2166-0727&rft_id=info:doi/&rft.eisbn=9789899843400&rft.eisbn_list=9899843407&rft_dat=%3Cieee_6IE%3E6615898%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-bc65aacd86798490a154a6ecb18ac6a96d3d1cd0b97add15d88c313796afb3f93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6615898&rfr_iscdi=true |