Loading…
Emotional speaker verification with linear adaptation
Speaker verification suffers from significant performance degradation on emotional speech. We present an adaptation approach based on maximum likelihood linear regression (MLLR) and its feature-space variant, CMLLR. Our preliminary experiments demonstrate that this approach leads to considerable per...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 94 |
container_issue | |
container_start_page | 91 |
container_title | |
container_volume | |
creator | Fanhu Bie Dong Wang Zheng, Thomas Fang Ruxin Chen |
description | Speaker verification suffers from significant performance degradation on emotional speech. We present an adaptation approach based on maximum likelihood linear regression (MLLR) and its feature-space variant, CMLLR. Our preliminary experiments demonstrate that this approach leads to considerable performance improvement, particularly with CMLLR (about 10% relative EER reduction in average). We also find that the performance gain can be significantly increased with a large set of training data for the transform estimation. |
doi_str_mv | 10.1109/ChinaSIP.2013.6625304 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6625304</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6625304</ieee_id><sourcerecordid>6625304</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-d6af387a32b6945e8c6a8a9fc4b9336554af901a9767576733693d3ad3d844d73</originalsourceid><addsrcrecordid>eNotz81Kw0AUBeBxISg1TyBCXiDxTu783aWEqoWCgt2X28wMHU3TMAmKb2_VLg4HvsWBI8SdhFpKoPt2nwZ-W73WDUisjWk0groQBVknlSWSoFBdiWKa3gFAWquR8Fro5eE4p-PAfTmNgT9CLj9DTjF1_MvlV5r3ZZ-GwLlkz-P8xzfiMnI_heLcC7F5XG7a52r98rRqH9ZVIpgrbziis4zNzpDSwXWGHVPs1I4QjdaKI4FkssbqU05G6JE9eqeUt7gQt_-zKYSwHXM6cP7enr_hD4tyRZc</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Emotional speaker verification with linear adaptation</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Fanhu Bie ; Dong Wang ; Zheng, Thomas Fang ; Ruxin Chen</creator><creatorcontrib>Fanhu Bie ; Dong Wang ; Zheng, Thomas Fang ; Ruxin Chen</creatorcontrib><description>Speaker verification suffers from significant performance degradation on emotional speech. We present an adaptation approach based on maximum likelihood linear regression (MLLR) and its feature-space variant, CMLLR. Our preliminary experiments demonstrate that this approach leads to considerable performance improvement, particularly with CMLLR (about 10% relative EER reduction in average). We also find that the performance gain can be significantly increased with a large set of training data for the transform estimation.</description><identifier>EISBN: 9781479910434</identifier><identifier>EISBN: 1479910430</identifier><identifier>DOI: 10.1109/ChinaSIP.2013.6625304</identifier><language>eng</language><publisher>IEEE</publisher><subject>Acoustics ; Adaptation models ; emotional speech ; Hidden Markov models ; MLLR ; speaker verification ; Speech ; Training ; Transforms ; Vectors</subject><ispartof>2013 IEEE China Summit and International Conference on Signal and Information Processing, 2013, p.91-94</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6625304$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6625304$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Fanhu Bie</creatorcontrib><creatorcontrib>Dong Wang</creatorcontrib><creatorcontrib>Zheng, Thomas Fang</creatorcontrib><creatorcontrib>Ruxin Chen</creatorcontrib><title>Emotional speaker verification with linear adaptation</title><title>2013 IEEE China Summit and International Conference on Signal and Information Processing</title><addtitle>ChinaSIP</addtitle><description>Speaker verification suffers from significant performance degradation on emotional speech. We present an adaptation approach based on maximum likelihood linear regression (MLLR) and its feature-space variant, CMLLR. Our preliminary experiments demonstrate that this approach leads to considerable performance improvement, particularly with CMLLR (about 10% relative EER reduction in average). We also find that the performance gain can be significantly increased with a large set of training data for the transform estimation.</description><subject>Acoustics</subject><subject>Adaptation models</subject><subject>emotional speech</subject><subject>Hidden Markov models</subject><subject>MLLR</subject><subject>speaker verification</subject><subject>Speech</subject><subject>Training</subject><subject>Transforms</subject><subject>Vectors</subject><isbn>9781479910434</isbn><isbn>1479910430</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2013</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotz81Kw0AUBeBxISg1TyBCXiDxTu783aWEqoWCgt2X28wMHU3TMAmKb2_VLg4HvsWBI8SdhFpKoPt2nwZ-W73WDUisjWk0groQBVknlSWSoFBdiWKa3gFAWquR8Fro5eE4p-PAfTmNgT9CLj9DTjF1_MvlV5r3ZZ-GwLlkz-P8xzfiMnI_heLcC7F5XG7a52r98rRqH9ZVIpgrbziis4zNzpDSwXWGHVPs1I4QjdaKI4FkssbqU05G6JE9eqeUt7gQt_-zKYSwHXM6cP7enr_hD4tyRZc</recordid><startdate>201307</startdate><enddate>201307</enddate><creator>Fanhu Bie</creator><creator>Dong Wang</creator><creator>Zheng, Thomas Fang</creator><creator>Ruxin Chen</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201307</creationdate><title>Emotional speaker verification with linear adaptation</title><author>Fanhu Bie ; Dong Wang ; Zheng, Thomas Fang ; Ruxin Chen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-d6af387a32b6945e8c6a8a9fc4b9336554af901a9767576733693d3ad3d844d73</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Acoustics</topic><topic>Adaptation models</topic><topic>emotional speech</topic><topic>Hidden Markov models</topic><topic>MLLR</topic><topic>speaker verification</topic><topic>Speech</topic><topic>Training</topic><topic>Transforms</topic><topic>Vectors</topic><toplevel>online_resources</toplevel><creatorcontrib>Fanhu Bie</creatorcontrib><creatorcontrib>Dong Wang</creatorcontrib><creatorcontrib>Zheng, Thomas Fang</creatorcontrib><creatorcontrib>Ruxin Chen</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library Online</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Fanhu Bie</au><au>Dong Wang</au><au>Zheng, Thomas Fang</au><au>Ruxin Chen</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Emotional speaker verification with linear adaptation</atitle><btitle>2013 IEEE China Summit and International Conference on Signal and Information Processing</btitle><stitle>ChinaSIP</stitle><date>2013-07</date><risdate>2013</risdate><spage>91</spage><epage>94</epage><pages>91-94</pages><eisbn>9781479910434</eisbn><eisbn>1479910430</eisbn><abstract>Speaker verification suffers from significant performance degradation on emotional speech. We present an adaptation approach based on maximum likelihood linear regression (MLLR) and its feature-space variant, CMLLR. Our preliminary experiments demonstrate that this approach leads to considerable performance improvement, particularly with CMLLR (about 10% relative EER reduction in average). We also find that the performance gain can be significantly increased with a large set of training data for the transform estimation.</abstract><pub>IEEE</pub><doi>10.1109/ChinaSIP.2013.6625304</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISBN: 9781479910434 |
ispartof | 2013 IEEE China Summit and International Conference on Signal and Information Processing, 2013, p.91-94 |
issn | |
language | eng |
recordid | cdi_ieee_primary_6625304 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Acoustics Adaptation models emotional speech Hidden Markov models MLLR speaker verification Speech Training Transforms Vectors |
title | Emotional speaker verification with linear adaptation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T17%3A07%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Emotional%20speaker%20verification%20with%20linear%20adaptation&rft.btitle=2013%20IEEE%20China%20Summit%20and%20International%20Conference%20on%20Signal%20and%20Information%20Processing&rft.au=Fanhu%20Bie&rft.date=2013-07&rft.spage=91&rft.epage=94&rft.pages=91-94&rft_id=info:doi/10.1109/ChinaSIP.2013.6625304&rft.eisbn=9781479910434&rft.eisbn_list=1479910430&rft_dat=%3Cieee_6IE%3E6625304%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i90t-d6af387a32b6945e8c6a8a9fc4b9336554af901a9767576733693d3ad3d844d73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6625304&rfr_iscdi=true |