Loading…
A Discriminative Approach to On-Line Handwriting Recognition Using Bi-character Models
Unconstrained on-line handwriting recognition is typically approached within the framework of generative HMM-based classifiers. In this paper, we introduce a novel discriminative method that relies, in contrast, on explicit grapheme segmentation and SVM-based character recognition. In addition to si...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 368 |
container_issue | |
container_start_page | 364 |
container_title | |
container_volume | |
creator | Prum, S. Visani, M. Fischer, A. Ogier, J. M. |
description | Unconstrained on-line handwriting recognition is typically approached within the framework of generative HMM-based classifiers. In this paper, we introduce a novel discriminative method that relies, in contrast, on explicit grapheme segmentation and SVM-based character recognition. In addition to single character recognition with rejection, bi-characters are recognized in order to refine the recognition hypotheses. In particular, bi-character recognition is able to cope with the problem of shared character parts. Whole word recognition is achieved with an efficient dynamic programming method similar to the Viterbi algorithm. In an experimental evaluation on the Unipen-ICROW-03 database, we demonstrate improvements in recognition accuracy of up to 8% for a lexicon of 20,000 words with the proposed method when compared with an HMM-based baseline system. The computational speed is on par with the baseline system. |
doi_str_mv | 10.1109/ICDAR.2013.80 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_6628645</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6628645</ieee_id><sourcerecordid>6628645</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-e5a101e8d79b3b472bfa2c3a665a884483c29e36ee7b9f30106a272aaca5a5e33</originalsourceid><addsrcrecordid>eNotj81Kw0AYRUdRsNYuXbmZF5g6P5m_ZUyrLVQKxbotXyZf2pE6CUlQfHtbdHUvh8uBS8i94FMhuH9cFrN8M5VcqKnjF2TirePWeJ15780lGUllPZMi41dkJLTkTCujbsht339wLs6jEXnP6Sz2oYufMcEQv5Dmbds1EA50aOg6sVVMSBeQqu8uDjHt6QZDs0-n3iS67c_kKbJwgA7CgB19bSo89nfkuoZjj5P_HJPt8_ytWLDV-mVZ5CsWhdUDQw2CC3SV9aUqMyvLGmRQYIwG57LMqSA9KoNoS18rLrgBaSVAAA0alRqThz9vRMRde7oB3c_OGOlMptUvqDdSYQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A Discriminative Approach to On-Line Handwriting Recognition Using Bi-character Models</title><source>IEEE Xplore All Conference Series</source><creator>Prum, S. ; Visani, M. ; Fischer, A. ; Ogier, J. M.</creator><creatorcontrib>Prum, S. ; Visani, M. ; Fischer, A. ; Ogier, J. M.</creatorcontrib><description>Unconstrained on-line handwriting recognition is typically approached within the framework of generative HMM-based classifiers. In this paper, we introduce a novel discriminative method that relies, in contrast, on explicit grapheme segmentation and SVM-based character recognition. In addition to single character recognition with rejection, bi-characters are recognized in order to refine the recognition hypotheses. In particular, bi-character recognition is able to cope with the problem of shared character parts. Whole word recognition is achieved with an efficient dynamic programming method similar to the Viterbi algorithm. In an experimental evaluation on the Unipen-ICROW-03 database, we demonstrate improvements in recognition accuracy of up to 8% for a lexicon of 20,000 words with the proposed method when compared with an HMM-based baseline system. The computational speed is on par with the baseline system.</description><identifier>ISSN: 1520-5363</identifier><identifier>EISSN: 2379-2140</identifier><identifier>EISBN: 9780769549996</identifier><identifier>EISBN: 0769549993</identifier><identifier>DOI: 10.1109/ICDAR.2013.80</identifier><identifier>CODEN: IEEPAD</identifier><language>eng</language><publisher>IEEE</publisher><subject>bi-character recognition ; Character recognition ; combining on-line and off-line features ; dynamic programming ; Handwriting recognition ; Hidden Markov models ; Lattices ; on-line handwriting recognition ; Shape ; support vector machine ; Support vector machines ; Thyristors</subject><ispartof>2013 12th International Conference on Document Analysis and Recognition, 2013, p.364-368</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6628645$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6628645$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Prum, S.</creatorcontrib><creatorcontrib>Visani, M.</creatorcontrib><creatorcontrib>Fischer, A.</creatorcontrib><creatorcontrib>Ogier, J. M.</creatorcontrib><title>A Discriminative Approach to On-Line Handwriting Recognition Using Bi-character Models</title><title>2013 12th International Conference on Document Analysis and Recognition</title><addtitle>icdar</addtitle><description>Unconstrained on-line handwriting recognition is typically approached within the framework of generative HMM-based classifiers. In this paper, we introduce a novel discriminative method that relies, in contrast, on explicit grapheme segmentation and SVM-based character recognition. In addition to single character recognition with rejection, bi-characters are recognized in order to refine the recognition hypotheses. In particular, bi-character recognition is able to cope with the problem of shared character parts. Whole word recognition is achieved with an efficient dynamic programming method similar to the Viterbi algorithm. In an experimental evaluation on the Unipen-ICROW-03 database, we demonstrate improvements in recognition accuracy of up to 8% for a lexicon of 20,000 words with the proposed method when compared with an HMM-based baseline system. The computational speed is on par with the baseline system.</description><subject>bi-character recognition</subject><subject>Character recognition</subject><subject>combining on-line and off-line features</subject><subject>dynamic programming</subject><subject>Handwriting recognition</subject><subject>Hidden Markov models</subject><subject>Lattices</subject><subject>on-line handwriting recognition</subject><subject>Shape</subject><subject>support vector machine</subject><subject>Support vector machines</subject><subject>Thyristors</subject><issn>1520-5363</issn><issn>2379-2140</issn><isbn>9780769549996</isbn><isbn>0769549993</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2013</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotj81Kw0AYRUdRsNYuXbmZF5g6P5m_ZUyrLVQKxbotXyZf2pE6CUlQfHtbdHUvh8uBS8i94FMhuH9cFrN8M5VcqKnjF2TirePWeJ15780lGUllPZMi41dkJLTkTCujbsht339wLs6jEXnP6Sz2oYufMcEQv5Dmbds1EA50aOg6sVVMSBeQqu8uDjHt6QZDs0-n3iS67c_kKbJwgA7CgB19bSo89nfkuoZjj5P_HJPt8_ytWLDV-mVZ5CsWhdUDQw2CC3SV9aUqMyvLGmRQYIwG57LMqSA9KoNoS18rLrgBaSVAAA0alRqThz9vRMRde7oB3c_OGOlMptUvqDdSYQ</recordid><startdate>201308</startdate><enddate>201308</enddate><creator>Prum, S.</creator><creator>Visani, M.</creator><creator>Fischer, A.</creator><creator>Ogier, J. M.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201308</creationdate><title>A Discriminative Approach to On-Line Handwriting Recognition Using Bi-character Models</title><author>Prum, S. ; Visani, M. ; Fischer, A. ; Ogier, J. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-e5a101e8d79b3b472bfa2c3a665a884483c29e36ee7b9f30106a272aaca5a5e33</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2013</creationdate><topic>bi-character recognition</topic><topic>Character recognition</topic><topic>combining on-line and off-line features</topic><topic>dynamic programming</topic><topic>Handwriting recognition</topic><topic>Hidden Markov models</topic><topic>Lattices</topic><topic>on-line handwriting recognition</topic><topic>Shape</topic><topic>support vector machine</topic><topic>Support vector machines</topic><topic>Thyristors</topic><toplevel>online_resources</toplevel><creatorcontrib>Prum, S.</creatorcontrib><creatorcontrib>Visani, M.</creatorcontrib><creatorcontrib>Fischer, A.</creatorcontrib><creatorcontrib>Ogier, J. M.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library Online</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Prum, S.</au><au>Visani, M.</au><au>Fischer, A.</au><au>Ogier, J. M.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A Discriminative Approach to On-Line Handwriting Recognition Using Bi-character Models</atitle><btitle>2013 12th International Conference on Document Analysis and Recognition</btitle><stitle>icdar</stitle><date>2013-08</date><risdate>2013</risdate><spage>364</spage><epage>368</epage><pages>364-368</pages><issn>1520-5363</issn><eissn>2379-2140</eissn><eisbn>9780769549996</eisbn><eisbn>0769549993</eisbn><coden>IEEPAD</coden><abstract>Unconstrained on-line handwriting recognition is typically approached within the framework of generative HMM-based classifiers. In this paper, we introduce a novel discriminative method that relies, in contrast, on explicit grapheme segmentation and SVM-based character recognition. In addition to single character recognition with rejection, bi-characters are recognized in order to refine the recognition hypotheses. In particular, bi-character recognition is able to cope with the problem of shared character parts. Whole word recognition is achieved with an efficient dynamic programming method similar to the Viterbi algorithm. In an experimental evaluation on the Unipen-ICROW-03 database, we demonstrate improvements in recognition accuracy of up to 8% for a lexicon of 20,000 words with the proposed method when compared with an HMM-based baseline system. The computational speed is on par with the baseline system.</abstract><pub>IEEE</pub><doi>10.1109/ICDAR.2013.80</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1520-5363 |
ispartof | 2013 12th International Conference on Document Analysis and Recognition, 2013, p.364-368 |
issn | 1520-5363 2379-2140 |
language | eng |
recordid | cdi_ieee_primary_6628645 |
source | IEEE Xplore All Conference Series |
subjects | bi-character recognition Character recognition combining on-line and off-line features dynamic programming Handwriting recognition Hidden Markov models Lattices on-line handwriting recognition Shape support vector machine Support vector machines Thyristors |
title | A Discriminative Approach to On-Line Handwriting Recognition Using Bi-character Models |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T23%3A05%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20Discriminative%20Approach%20to%20On-Line%20Handwriting%20Recognition%20Using%20Bi-character%20Models&rft.btitle=2013%2012th%20International%20Conference%20on%20Document%20Analysis%20and%20Recognition&rft.au=Prum,%20S.&rft.date=2013-08&rft.spage=364&rft.epage=368&rft.pages=364-368&rft.issn=1520-5363&rft.eissn=2379-2140&rft.coden=IEEPAD&rft_id=info:doi/10.1109/ICDAR.2013.80&rft.eisbn=9780769549996&rft.eisbn_list=0769549993&rft_dat=%3Cieee_CHZPO%3E6628645%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-e5a101e8d79b3b472bfa2c3a665a884483c29e36ee7b9f30106a272aaca5a5e33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6628645&rfr_iscdi=true |