Loading…
Emotion classification via utterance-level dynamics: A pattern-based approach to characterizing affective expressions
Human emotion changes continuously and sequentially. This results in dynamics intrinsic to affective communication. One of the goals of automatic emotion recognition research is to computationally represent and analyze these dynamic patterns. In this work, we focus on the global utterance-level dyna...
Saved in:
Main Authors: | , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c225t-d917d7a769a78df1f50b3aa9ec96e7082c7fef5a2275e2e7adcb831cab6b7db73 |
---|---|
cites | |
container_end_page | 3681 |
container_issue | |
container_start_page | 3677 |
container_title | |
container_volume | |
creator | Yelin Kim Provost, Emily Mower |
description | Human emotion changes continuously and sequentially. This results in dynamics intrinsic to affective communication. One of the goals of automatic emotion recognition research is to computationally represent and analyze these dynamic patterns. In this work, we focus on the global utterance-level dynamics. We are motivated by the hypothesis that global dynamics have emotion-specific variations that can be used to differentiate between emotion classes. Consequently, classification systems that focus on these patterns will be able to make accurate emotional assessments. We quantitatively represent emotion flow within an utterance by estimating short-time affective characteristics. We compare time-series estimates of these characteristics using Dynamic Time Warping, a time-series similarity measure. We demonstrate that this similarity can effectively recognize the affective label of the utterance. The similarity-based pattern modeling outperforms both a feature-based baseline and static modeling. It also provides insight into typical high-level patterns of emotion. We visualize these dynamic patterns and the similarities between the patterns to gain insight into the nature of emotion expression. |
doi_str_mv | 10.1109/ICASSP.2013.6638344 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_6638344</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6638344</ieee_id><sourcerecordid>6638344</sourcerecordid><originalsourceid>FETCH-LOGICAL-c225t-d917d7a769a78df1f50b3aa9ec96e7082c7fef5a2275e2e7adcb831cab6b7db73</originalsourceid><addsrcrecordid>eNotkNtKAzEYhKMo2FafoDd5gdQcdpONd6XUAxQUquBd-Tf5YyPb3WWzXaxPb9VeDcMHM8wQMhV8JgS3t0-L-Xr9MpNcqJnWqlBZdkbGIjPWcpVrfU5GUhnLhOXvF2QkcsmZFpm9IuOUPjnnhcmKEdkvd00fm5q6ClKKITr4s0MEuu977KB2yCocsKL-UMMuunRH57SFX1izEhJ6Cm3bNeC2tG-o20IH7gjjd6w_KISAro8DUvxqOzx2NHW6JpcBqoQ3J52Qt_vl6-KRrZ4fjsNWzEmZ98xbYbwBoy2YwgcRcl4qAIvOajS8kM4EDDlIaXKUaMC7slDCQalL40ujJmT6nxsRcdN2cQfdYXO6S_0ApYZhlg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Emotion classification via utterance-level dynamics: A pattern-based approach to characterizing affective expressions</title><source>IEEE Xplore All Conference Series</source><creator>Yelin Kim ; Provost, Emily Mower</creator><creatorcontrib>Yelin Kim ; Provost, Emily Mower</creatorcontrib><description>Human emotion changes continuously and sequentially. This results in dynamics intrinsic to affective communication. One of the goals of automatic emotion recognition research is to computationally represent and analyze these dynamic patterns. In this work, we focus on the global utterance-level dynamics. We are motivated by the hypothesis that global dynamics have emotion-specific variations that can be used to differentiate between emotion classes. Consequently, classification systems that focus on these patterns will be able to make accurate emotional assessments. We quantitatively represent emotion flow within an utterance by estimating short-time affective characteristics. We compare time-series estimates of these characteristics using Dynamic Time Warping, a time-series similarity measure. We demonstrate that this similarity can effectively recognize the affective label of the utterance. The similarity-based pattern modeling outperforms both a feature-based baseline and static modeling. It also provides insight into typical high-level patterns of emotion. We visualize these dynamic patterns and the similarities between the patterns to gain insight into the nature of emotion expression.</description><identifier>ISSN: 1520-6149</identifier><identifier>EISSN: 2379-190X</identifier><identifier>EISBN: 1479903566</identifier><identifier>EISBN: 9781479903566</identifier><identifier>DOI: 10.1109/ICASSP.2013.6638344</identifier><language>eng</language><publisher>IEEE</publisher><subject>Accuracy ; dynamic pattern ; dynamic time warping ; emotion classification ; emotion dynamics ; Emotion recognition ; emotion structure ; Hidden Markov models ; Mathematical model ; multimodal ; Speech ; Speech recognition ; Trajectory</subject><ispartof>2013 IEEE International Conference on Acoustics, Speech and Signal Processing, 2013, p.3677-3681</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c225t-d917d7a769a78df1f50b3aa9ec96e7082c7fef5a2275e2e7adcb831cab6b7db73</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6638344$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,23930,23931,25140,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6638344$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Yelin Kim</creatorcontrib><creatorcontrib>Provost, Emily Mower</creatorcontrib><title>Emotion classification via utterance-level dynamics: A pattern-based approach to characterizing affective expressions</title><title>2013 IEEE International Conference on Acoustics, Speech and Signal Processing</title><addtitle>ICASSP</addtitle><description>Human emotion changes continuously and sequentially. This results in dynamics intrinsic to affective communication. One of the goals of automatic emotion recognition research is to computationally represent and analyze these dynamic patterns. In this work, we focus on the global utterance-level dynamics. We are motivated by the hypothesis that global dynamics have emotion-specific variations that can be used to differentiate between emotion classes. Consequently, classification systems that focus on these patterns will be able to make accurate emotional assessments. We quantitatively represent emotion flow within an utterance by estimating short-time affective characteristics. We compare time-series estimates of these characteristics using Dynamic Time Warping, a time-series similarity measure. We demonstrate that this similarity can effectively recognize the affective label of the utterance. The similarity-based pattern modeling outperforms both a feature-based baseline and static modeling. It also provides insight into typical high-level patterns of emotion. We visualize these dynamic patterns and the similarities between the patterns to gain insight into the nature of emotion expression.</description><subject>Accuracy</subject><subject>dynamic pattern</subject><subject>dynamic time warping</subject><subject>emotion classification</subject><subject>emotion dynamics</subject><subject>Emotion recognition</subject><subject>emotion structure</subject><subject>Hidden Markov models</subject><subject>Mathematical model</subject><subject>multimodal</subject><subject>Speech</subject><subject>Speech recognition</subject><subject>Trajectory</subject><issn>1520-6149</issn><issn>2379-190X</issn><isbn>1479903566</isbn><isbn>9781479903566</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2013</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotkNtKAzEYhKMo2FafoDd5gdQcdpONd6XUAxQUquBd-Tf5YyPb3WWzXaxPb9VeDcMHM8wQMhV8JgS3t0-L-Xr9MpNcqJnWqlBZdkbGIjPWcpVrfU5GUhnLhOXvF2QkcsmZFpm9IuOUPjnnhcmKEdkvd00fm5q6ClKKITr4s0MEuu977KB2yCocsKL-UMMuunRH57SFX1izEhJ6Cm3bNeC2tG-o20IH7gjjd6w_KISAro8DUvxqOzx2NHW6JpcBqoQ3J52Qt_vl6-KRrZ4fjsNWzEmZ98xbYbwBoy2YwgcRcl4qAIvOajS8kM4EDDlIaXKUaMC7slDCQalL40ujJmT6nxsRcdN2cQfdYXO6S_0ApYZhlg</recordid><startdate>201305</startdate><enddate>201305</enddate><creator>Yelin Kim</creator><creator>Provost, Emily Mower</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201305</creationdate><title>Emotion classification via utterance-level dynamics: A pattern-based approach to characterizing affective expressions</title><author>Yelin Kim ; Provost, Emily Mower</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c225t-d917d7a769a78df1f50b3aa9ec96e7082c7fef5a2275e2e7adcb831cab6b7db73</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Accuracy</topic><topic>dynamic pattern</topic><topic>dynamic time warping</topic><topic>emotion classification</topic><topic>emotion dynamics</topic><topic>Emotion recognition</topic><topic>emotion structure</topic><topic>Hidden Markov models</topic><topic>Mathematical model</topic><topic>multimodal</topic><topic>Speech</topic><topic>Speech recognition</topic><topic>Trajectory</topic><toplevel>online_resources</toplevel><creatorcontrib>Yelin Kim</creatorcontrib><creatorcontrib>Provost, Emily Mower</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yelin Kim</au><au>Provost, Emily Mower</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Emotion classification via utterance-level dynamics: A pattern-based approach to characterizing affective expressions</atitle><btitle>2013 IEEE International Conference on Acoustics, Speech and Signal Processing</btitle><stitle>ICASSP</stitle><date>2013-05</date><risdate>2013</risdate><spage>3677</spage><epage>3681</epage><pages>3677-3681</pages><issn>1520-6149</issn><eissn>2379-190X</eissn><eisbn>1479903566</eisbn><eisbn>9781479903566</eisbn><abstract>Human emotion changes continuously and sequentially. This results in dynamics intrinsic to affective communication. One of the goals of automatic emotion recognition research is to computationally represent and analyze these dynamic patterns. In this work, we focus on the global utterance-level dynamics. We are motivated by the hypothesis that global dynamics have emotion-specific variations that can be used to differentiate between emotion classes. Consequently, classification systems that focus on these patterns will be able to make accurate emotional assessments. We quantitatively represent emotion flow within an utterance by estimating short-time affective characteristics. We compare time-series estimates of these characteristics using Dynamic Time Warping, a time-series similarity measure. We demonstrate that this similarity can effectively recognize the affective label of the utterance. The similarity-based pattern modeling outperforms both a feature-based baseline and static modeling. It also provides insight into typical high-level patterns of emotion. We visualize these dynamic patterns and the similarities between the patterns to gain insight into the nature of emotion expression.</abstract><pub>IEEE</pub><doi>10.1109/ICASSP.2013.6638344</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1520-6149 |
ispartof | 2013 IEEE International Conference on Acoustics, Speech and Signal Processing, 2013, p.3677-3681 |
issn | 1520-6149 2379-190X |
language | eng |
recordid | cdi_ieee_primary_6638344 |
source | IEEE Xplore All Conference Series |
subjects | Accuracy dynamic pattern dynamic time warping emotion classification emotion dynamics Emotion recognition emotion structure Hidden Markov models Mathematical model multimodal Speech Speech recognition Trajectory |
title | Emotion classification via utterance-level dynamics: A pattern-based approach to characterizing affective expressions |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T05%3A56%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Emotion%20classification%20via%20utterance-level%20dynamics:%20A%20pattern-based%20approach%20to%20characterizing%20affective%20expressions&rft.btitle=2013%20IEEE%20International%20Conference%20on%20Acoustics,%20Speech%20and%20Signal%20Processing&rft.au=Yelin%20Kim&rft.date=2013-05&rft.spage=3677&rft.epage=3681&rft.pages=3677-3681&rft.issn=1520-6149&rft.eissn=2379-190X&rft_id=info:doi/10.1109/ICASSP.2013.6638344&rft.eisbn=1479903566&rft.eisbn_list=9781479903566&rft_dat=%3Cieee_CHZPO%3E6638344%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c225t-d917d7a769a78df1f50b3aa9ec96e7082c7fef5a2275e2e7adcb831cab6b7db73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6638344&rfr_iscdi=true |