Loading…

A face recognition system based on a Kinect sensor and Windows Azure cloud technology

The aim of this paper is to build a system for human detection based on facial recognition. The state-of-the-art face recognition algorithms obtain high recognition rates base on demanding costs - computational, energy and memory. The use of these classical algorithms on an embedded system cannot ac...

Full description

Saved in:
Bibliographic Details
Main Authors: Dobrea, Dan-Marius, Maxim, Daniel, Ceparu, Stefan
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 4
container_issue
container_start_page 1
container_title
container_volume
creator Dobrea, Dan-Marius
Maxim, Daniel
Ceparu, Stefan
description The aim of this paper is to build a system for human detection based on facial recognition. The state-of-the-art face recognition algorithms obtain high recognition rates base on demanding costs - computational, energy and memory. The use of these classical algorithms on an embedded system cannot achieve such performances due to the existing constrains: computational power and memory. Our objective is to develop a cheap, real time embedded system able to recognize faces without any compromise on system's accuracy. The system is designed for automotive industry, smart house application and security systems. To achieve superior performance (higher recognition rates) in real time, an optimum combination of new technologies was used for detection and classification of faces. The face detection system uses skeletal-tracking feature of Microsoft Kinect sensor. The face recognition, more precisely - the training of neural network, the most computing-intensive part of the software, is achieved based on the Windows Azures cloud technology.
doi_str_mv 10.1109/ISSCS.2013.6651227
format conference_proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6651227</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6651227</ieee_id><sourcerecordid>6651227</sourcerecordid><originalsourceid>FETCH-LOGICAL-i241t-331e74530fa77478496afe71dcdd429b9ee8f53b126d3b79b7407b1f4cda70293</originalsourceid><addsrcrecordid>eNotkMtKAzEUQCMiKLU_oJv8QGtuksltlmXwUSy4qMVlySR3aqRNZDJFxq9X6KwOZ3MWh7E7EHMAYR9Wm029mUsBam5MBVLiBZtaXIA2qAxoqC5HR2sVWKWv2bSULyEEoEFQ4oZtl7x1nnhHPu9T7GNOvAylpyNvXKHA_93x15jI97xQKrnjLgX-EVPIP4Uvf08dcX_Ip8B78p8pH_J-uGVXrTsUmo6csO3T43v9Mlu_Pa_q5XoWpYZ-phQQ6kqJ1iFqXGhrXEsIwYegpW0s0aKtVAPSBNWgbVALbKDVPjgU0qoJuz93IxHtvrt4dN2wG2eoPwijUqY</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A face recognition system based on a Kinect sensor and Windows Azure cloud technology</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Dobrea, Dan-Marius ; Maxim, Daniel ; Ceparu, Stefan</creator><creatorcontrib>Dobrea, Dan-Marius ; Maxim, Daniel ; Ceparu, Stefan</creatorcontrib><description>The aim of this paper is to build a system for human detection based on facial recognition. The state-of-the-art face recognition algorithms obtain high recognition rates base on demanding costs - computational, energy and memory. The use of these classical algorithms on an embedded system cannot achieve such performances due to the existing constrains: computational power and memory. Our objective is to develop a cheap, real time embedded system able to recognize faces without any compromise on system's accuracy. The system is designed for automotive industry, smart house application and security systems. To achieve superior performance (higher recognition rates) in real time, an optimum combination of new technologies was used for detection and classification of faces. The face detection system uses skeletal-tracking feature of Microsoft Kinect sensor. The face recognition, more precisely - the training of neural network, the most computing-intensive part of the software, is achieved based on the Windows Azures cloud technology.</description><identifier>ISBN: 9781479931934</identifier><identifier>ISBN: 1479931934</identifier><identifier>EISBN: 9781467361415</identifier><identifier>EISBN: 9781467361439</identifier><identifier>EISBN: 1467361410</identifier><identifier>EISBN: 1467361437</identifier><identifier>DOI: 10.1109/ISSCS.2013.6651227</identifier><language>eng</language><publisher>IEEE</publisher><subject>Embedded systems ; Face ; Face detection ; Face recognition ; Neural networks ; Training</subject><ispartof>International Symposium on Signals, Circuits and Systems ISSCS2013, 2013, p.1-4</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6651227$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6651227$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Dobrea, Dan-Marius</creatorcontrib><creatorcontrib>Maxim, Daniel</creatorcontrib><creatorcontrib>Ceparu, Stefan</creatorcontrib><title>A face recognition system based on a Kinect sensor and Windows Azure cloud technology</title><title>International Symposium on Signals, Circuits and Systems ISSCS2013</title><addtitle>ISSCS</addtitle><description>The aim of this paper is to build a system for human detection based on facial recognition. The state-of-the-art face recognition algorithms obtain high recognition rates base on demanding costs - computational, energy and memory. The use of these classical algorithms on an embedded system cannot achieve such performances due to the existing constrains: computational power and memory. Our objective is to develop a cheap, real time embedded system able to recognize faces without any compromise on system's accuracy. The system is designed for automotive industry, smart house application and security systems. To achieve superior performance (higher recognition rates) in real time, an optimum combination of new technologies was used for detection and classification of faces. The face detection system uses skeletal-tracking feature of Microsoft Kinect sensor. The face recognition, more precisely - the training of neural network, the most computing-intensive part of the software, is achieved based on the Windows Azures cloud technology.</description><subject>Embedded systems</subject><subject>Face</subject><subject>Face detection</subject><subject>Face recognition</subject><subject>Neural networks</subject><subject>Training</subject><isbn>9781479931934</isbn><isbn>1479931934</isbn><isbn>9781467361415</isbn><isbn>9781467361439</isbn><isbn>1467361410</isbn><isbn>1467361437</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2013</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotkMtKAzEUQCMiKLU_oJv8QGtuksltlmXwUSy4qMVlySR3aqRNZDJFxq9X6KwOZ3MWh7E7EHMAYR9Wm029mUsBam5MBVLiBZtaXIA2qAxoqC5HR2sVWKWv2bSULyEEoEFQ4oZtl7x1nnhHPu9T7GNOvAylpyNvXKHA_93x15jI97xQKrnjLgX-EVPIP4Uvf08dcX_Ip8B78p8pH_J-uGVXrTsUmo6csO3T43v9Mlu_Pa_q5XoWpYZ-phQQ6kqJ1iFqXGhrXEsIwYegpW0s0aKtVAPSBNWgbVALbKDVPjgU0qoJuz93IxHtvrt4dN2wG2eoPwijUqY</recordid><startdate>201307</startdate><enddate>201307</enddate><creator>Dobrea, Dan-Marius</creator><creator>Maxim, Daniel</creator><creator>Ceparu, Stefan</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201307</creationdate><title>A face recognition system based on a Kinect sensor and Windows Azure cloud technology</title><author>Dobrea, Dan-Marius ; Maxim, Daniel ; Ceparu, Stefan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i241t-331e74530fa77478496afe71dcdd429b9ee8f53b126d3b79b7407b1f4cda70293</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Embedded systems</topic><topic>Face</topic><topic>Face detection</topic><topic>Face recognition</topic><topic>Neural networks</topic><topic>Training</topic><toplevel>online_resources</toplevel><creatorcontrib>Dobrea, Dan-Marius</creatorcontrib><creatorcontrib>Maxim, Daniel</creatorcontrib><creatorcontrib>Ceparu, Stefan</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Dobrea, Dan-Marius</au><au>Maxim, Daniel</au><au>Ceparu, Stefan</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A face recognition system based on a Kinect sensor and Windows Azure cloud technology</atitle><btitle>International Symposium on Signals, Circuits and Systems ISSCS2013</btitle><stitle>ISSCS</stitle><date>2013-07</date><risdate>2013</risdate><spage>1</spage><epage>4</epage><pages>1-4</pages><isbn>9781479931934</isbn><isbn>1479931934</isbn><eisbn>9781467361415</eisbn><eisbn>9781467361439</eisbn><eisbn>1467361410</eisbn><eisbn>1467361437</eisbn><abstract>The aim of this paper is to build a system for human detection based on facial recognition. The state-of-the-art face recognition algorithms obtain high recognition rates base on demanding costs - computational, energy and memory. The use of these classical algorithms on an embedded system cannot achieve such performances due to the existing constrains: computational power and memory. Our objective is to develop a cheap, real time embedded system able to recognize faces without any compromise on system's accuracy. The system is designed for automotive industry, smart house application and security systems. To achieve superior performance (higher recognition rates) in real time, an optimum combination of new technologies was used for detection and classification of faces. The face detection system uses skeletal-tracking feature of Microsoft Kinect sensor. The face recognition, more precisely - the training of neural network, the most computing-intensive part of the software, is achieved based on the Windows Azures cloud technology.</abstract><pub>IEEE</pub><doi>10.1109/ISSCS.2013.6651227</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9781479931934
ispartof International Symposium on Signals, Circuits and Systems ISSCS2013, 2013, p.1-4
issn
language eng
recordid cdi_ieee_primary_6651227
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Embedded systems
Face
Face detection
Face recognition
Neural networks
Training
title A face recognition system based on a Kinect sensor and Windows Azure cloud technology
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T20%3A15%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20face%20recognition%20system%20based%20on%20a%20Kinect%20sensor%20and%20Windows%20Azure%20cloud%20technology&rft.btitle=International%20Symposium%20on%20Signals,%20Circuits%20and%20Systems%20ISSCS2013&rft.au=Dobrea,%20Dan-Marius&rft.date=2013-07&rft.spage=1&rft.epage=4&rft.pages=1-4&rft.isbn=9781479931934&rft.isbn_list=1479931934&rft_id=info:doi/10.1109/ISSCS.2013.6651227&rft.eisbn=9781467361415&rft.eisbn_list=9781467361439&rft.eisbn_list=1467361410&rft.eisbn_list=1467361437&rft_dat=%3Cieee_6IE%3E6651227%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i241t-331e74530fa77478496afe71dcdd429b9ee8f53b126d3b79b7407b1f4cda70293%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6651227&rfr_iscdi=true