Loading…

Motion control for magnetic micro-scale manipulation

This work demonstrates performance improvement in motion control under a particular set of machine system constraints. A high performance industrial magnetic micro-manipulation system, the Minimag, is introduced and modeled with both first principles and system identification. The form of the closed...

Full description

Saved in:
Bibliographic Details
Main Authors: Alleyne, Andrew G., Schurle, Simone, Meo, Alessandro, Nelson, Bradley J.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 790
container_issue
container_start_page 784
container_title
container_volume
creator Alleyne, Andrew G.
Schurle, Simone
Meo, Alessandro
Nelson, Bradley J.
description This work demonstrates performance improvement in motion control under a particular set of machine system constraints. A high performance industrial magnetic micro-manipulation system, the Minimag, is introduced and modeled with both first principles and system identification. The form of the closed loop controller is constrained by operational bounds and the system software, resulting in limits to achievable performance. A model-based motion control enhancement is developed and implemented using tools from Iterative Learning Control. The resulting performance improvements indicate the benefits of motion control even when the closed loop controller is fixed. Experimental results at two different size scales (500 μm and 4.5μm) are given.
doi_str_mv 10.23919/ECC.2013.6669173
format conference_proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6669173</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6669173</ieee_id><sourcerecordid>6669173</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-813216f479f7640b2c0fb4847f7f2f7f011aebb4b16ebfea265076a3204095cc3</originalsourceid><addsrcrecordid>eNotj09LxDAUxONBUNZ-APHSL9D6XpK-1xylrH9gxYuelyQkEmmbJa0Hv70VF2YY-DEMjBC3CK1UBs39fhhaCahaIjLI6kJUhnsFapMhaa5EtSxfAIDMSF13LfRrXlOea5_nteSxjrnUk_2cw5p8PSVfcrN4O4YNzun0Pdq_9o24jHZcQnXOnfh43L8Pz83h7elleDg0Cblbmx6VRIqaTWTS4KSH6HSvOXKUmwHRBue0QwouBiupAyarJGgwnfdqJ-7-d1MI4XgqabLl53j-pn4BphpD4Q</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Motion control for magnetic micro-scale manipulation</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Alleyne, Andrew G. ; Schurle, Simone ; Meo, Alessandro ; Nelson, Bradley J.</creator><creatorcontrib>Alleyne, Andrew G. ; Schurle, Simone ; Meo, Alessandro ; Nelson, Bradley J.</creatorcontrib><description>This work demonstrates performance improvement in motion control under a particular set of machine system constraints. A high performance industrial magnetic micro-manipulation system, the Minimag, is introduced and modeled with both first principles and system identification. The form of the closed loop controller is constrained by operational bounds and the system software, resulting in limits to achievable performance. A model-based motion control enhancement is developed and implemented using tools from Iterative Learning Control. The resulting performance improvements indicate the benefits of motion control even when the closed loop controller is fixed. Experimental results at two different size scales (500 μm and 4.5μm) are given.</description><identifier>EISBN: 9783033039629</identifier><identifier>EISBN: 3033039626</identifier><identifier>DOI: 10.23919/ECC.2013.6669173</identifier><language>eng</language><publisher>EUCA</publisher><subject>Feedforward neural networks ; Force ; Magnetic fields ; Magnetic flux ; Mathematical model ; Trajectory</subject><ispartof>2013 European Control Conference (ECC), 2013, p.784-790</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6669173$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6669173$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Alleyne, Andrew G.</creatorcontrib><creatorcontrib>Schurle, Simone</creatorcontrib><creatorcontrib>Meo, Alessandro</creatorcontrib><creatorcontrib>Nelson, Bradley J.</creatorcontrib><title>Motion control for magnetic micro-scale manipulation</title><title>2013 European Control Conference (ECC)</title><addtitle>ECC</addtitle><description>This work demonstrates performance improvement in motion control under a particular set of machine system constraints. A high performance industrial magnetic micro-manipulation system, the Minimag, is introduced and modeled with both first principles and system identification. The form of the closed loop controller is constrained by operational bounds and the system software, resulting in limits to achievable performance. A model-based motion control enhancement is developed and implemented using tools from Iterative Learning Control. The resulting performance improvements indicate the benefits of motion control even when the closed loop controller is fixed. Experimental results at two different size scales (500 μm and 4.5μm) are given.</description><subject>Feedforward neural networks</subject><subject>Force</subject><subject>Magnetic fields</subject><subject>Magnetic flux</subject><subject>Mathematical model</subject><subject>Trajectory</subject><isbn>9783033039629</isbn><isbn>3033039626</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2013</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotj09LxDAUxONBUNZ-APHSL9D6XpK-1xylrH9gxYuelyQkEmmbJa0Hv70VF2YY-DEMjBC3CK1UBs39fhhaCahaIjLI6kJUhnsFapMhaa5EtSxfAIDMSF13LfRrXlOea5_nteSxjrnUk_2cw5p8PSVfcrN4O4YNzun0Pdq_9o24jHZcQnXOnfh43L8Pz83h7elleDg0Cblbmx6VRIqaTWTS4KSH6HSvOXKUmwHRBue0QwouBiupAyarJGgwnfdqJ-7-d1MI4XgqabLl53j-pn4BphpD4Q</recordid><startdate>201307</startdate><enddate>201307</enddate><creator>Alleyne, Andrew G.</creator><creator>Schurle, Simone</creator><creator>Meo, Alessandro</creator><creator>Nelson, Bradley J.</creator><general>EUCA</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201307</creationdate><title>Motion control for magnetic micro-scale manipulation</title><author>Alleyne, Andrew G. ; Schurle, Simone ; Meo, Alessandro ; Nelson, Bradley J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-813216f479f7640b2c0fb4847f7f2f7f011aebb4b16ebfea265076a3204095cc3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Feedforward neural networks</topic><topic>Force</topic><topic>Magnetic fields</topic><topic>Magnetic flux</topic><topic>Mathematical model</topic><topic>Trajectory</topic><toplevel>online_resources</toplevel><creatorcontrib>Alleyne, Andrew G.</creatorcontrib><creatorcontrib>Schurle, Simone</creatorcontrib><creatorcontrib>Meo, Alessandro</creatorcontrib><creatorcontrib>Nelson, Bradley J.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Alleyne, Andrew G.</au><au>Schurle, Simone</au><au>Meo, Alessandro</au><au>Nelson, Bradley J.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Motion control for magnetic micro-scale manipulation</atitle><btitle>2013 European Control Conference (ECC)</btitle><stitle>ECC</stitle><date>2013-07</date><risdate>2013</risdate><spage>784</spage><epage>790</epage><pages>784-790</pages><eisbn>9783033039629</eisbn><eisbn>3033039626</eisbn><abstract>This work demonstrates performance improvement in motion control under a particular set of machine system constraints. A high performance industrial magnetic micro-manipulation system, the Minimag, is introduced and modeled with both first principles and system identification. The form of the closed loop controller is constrained by operational bounds and the system software, resulting in limits to achievable performance. A model-based motion control enhancement is developed and implemented using tools from Iterative Learning Control. The resulting performance improvements indicate the benefits of motion control even when the closed loop controller is fixed. Experimental results at two different size scales (500 μm and 4.5μm) are given.</abstract><pub>EUCA</pub><doi>10.23919/ECC.2013.6669173</doi><tpages>7</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier EISBN: 9783033039629
ispartof 2013 European Control Conference (ECC), 2013, p.784-790
issn
language eng
recordid cdi_ieee_primary_6669173
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Feedforward neural networks
Force
Magnetic fields
Magnetic flux
Mathematical model
Trajectory
title Motion control for magnetic micro-scale manipulation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T03%3A01%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Motion%20control%20for%20magnetic%20micro-scale%20manipulation&rft.btitle=2013%20European%20Control%20Conference%20(ECC)&rft.au=Alleyne,%20Andrew%20G.&rft.date=2013-07&rft.spage=784&rft.epage=790&rft.pages=784-790&rft_id=info:doi/10.23919/ECC.2013.6669173&rft.eisbn=9783033039629&rft.eisbn_list=3033039626&rft_dat=%3Cieee_6IE%3E6669173%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-813216f479f7640b2c0fb4847f7f2f7f011aebb4b16ebfea265076a3204095cc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6669173&rfr_iscdi=true