Loading…
Motion control for magnetic micro-scale manipulation
This work demonstrates performance improvement in motion control under a particular set of machine system constraints. A high performance industrial magnetic micro-manipulation system, the Minimag, is introduced and modeled with both first principles and system identification. The form of the closed...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 790 |
container_issue | |
container_start_page | 784 |
container_title | |
container_volume | |
creator | Alleyne, Andrew G. Schurle, Simone Meo, Alessandro Nelson, Bradley J. |
description | This work demonstrates performance improvement in motion control under a particular set of machine system constraints. A high performance industrial magnetic micro-manipulation system, the Minimag, is introduced and modeled with both first principles and system identification. The form of the closed loop controller is constrained by operational bounds and the system software, resulting in limits to achievable performance. A model-based motion control enhancement is developed and implemented using tools from Iterative Learning Control. The resulting performance improvements indicate the benefits of motion control even when the closed loop controller is fixed. Experimental results at two different size scales (500 μm and 4.5μm) are given. |
doi_str_mv | 10.23919/ECC.2013.6669173 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6669173</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6669173</ieee_id><sourcerecordid>6669173</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-813216f479f7640b2c0fb4847f7f2f7f011aebb4b16ebfea265076a3204095cc3</originalsourceid><addsrcrecordid>eNotj09LxDAUxONBUNZ-APHSL9D6XpK-1xylrH9gxYuelyQkEmmbJa0Hv70VF2YY-DEMjBC3CK1UBs39fhhaCahaIjLI6kJUhnsFapMhaa5EtSxfAIDMSF13LfRrXlOea5_nteSxjrnUk_2cw5p8PSVfcrN4O4YNzun0Pdq_9o24jHZcQnXOnfh43L8Pz83h7elleDg0Cblbmx6VRIqaTWTS4KSH6HSvOXKUmwHRBue0QwouBiupAyarJGgwnfdqJ-7-d1MI4XgqabLl53j-pn4BphpD4Q</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Motion control for magnetic micro-scale manipulation</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Alleyne, Andrew G. ; Schurle, Simone ; Meo, Alessandro ; Nelson, Bradley J.</creator><creatorcontrib>Alleyne, Andrew G. ; Schurle, Simone ; Meo, Alessandro ; Nelson, Bradley J.</creatorcontrib><description>This work demonstrates performance improvement in motion control under a particular set of machine system constraints. A high performance industrial magnetic micro-manipulation system, the Minimag, is introduced and modeled with both first principles and system identification. The form of the closed loop controller is constrained by operational bounds and the system software, resulting in limits to achievable performance. A model-based motion control enhancement is developed and implemented using tools from Iterative Learning Control. The resulting performance improvements indicate the benefits of motion control even when the closed loop controller is fixed. Experimental results at two different size scales (500 μm and 4.5μm) are given.</description><identifier>EISBN: 9783033039629</identifier><identifier>EISBN: 3033039626</identifier><identifier>DOI: 10.23919/ECC.2013.6669173</identifier><language>eng</language><publisher>EUCA</publisher><subject>Feedforward neural networks ; Force ; Magnetic fields ; Magnetic flux ; Mathematical model ; Trajectory</subject><ispartof>2013 European Control Conference (ECC), 2013, p.784-790</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6669173$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6669173$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Alleyne, Andrew G.</creatorcontrib><creatorcontrib>Schurle, Simone</creatorcontrib><creatorcontrib>Meo, Alessandro</creatorcontrib><creatorcontrib>Nelson, Bradley J.</creatorcontrib><title>Motion control for magnetic micro-scale manipulation</title><title>2013 European Control Conference (ECC)</title><addtitle>ECC</addtitle><description>This work demonstrates performance improvement in motion control under a particular set of machine system constraints. A high performance industrial magnetic micro-manipulation system, the Minimag, is introduced and modeled with both first principles and system identification. The form of the closed loop controller is constrained by operational bounds and the system software, resulting in limits to achievable performance. A model-based motion control enhancement is developed and implemented using tools from Iterative Learning Control. The resulting performance improvements indicate the benefits of motion control even when the closed loop controller is fixed. Experimental results at two different size scales (500 μm and 4.5μm) are given.</description><subject>Feedforward neural networks</subject><subject>Force</subject><subject>Magnetic fields</subject><subject>Magnetic flux</subject><subject>Mathematical model</subject><subject>Trajectory</subject><isbn>9783033039629</isbn><isbn>3033039626</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2013</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotj09LxDAUxONBUNZ-APHSL9D6XpK-1xylrH9gxYuelyQkEmmbJa0Hv70VF2YY-DEMjBC3CK1UBs39fhhaCahaIjLI6kJUhnsFapMhaa5EtSxfAIDMSF13LfRrXlOea5_nteSxjrnUk_2cw5p8PSVfcrN4O4YNzun0Pdq_9o24jHZcQnXOnfh43L8Pz83h7elleDg0Cblbmx6VRIqaTWTS4KSH6HSvOXKUmwHRBue0QwouBiupAyarJGgwnfdqJ-7-d1MI4XgqabLl53j-pn4BphpD4Q</recordid><startdate>201307</startdate><enddate>201307</enddate><creator>Alleyne, Andrew G.</creator><creator>Schurle, Simone</creator><creator>Meo, Alessandro</creator><creator>Nelson, Bradley J.</creator><general>EUCA</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201307</creationdate><title>Motion control for magnetic micro-scale manipulation</title><author>Alleyne, Andrew G. ; Schurle, Simone ; Meo, Alessandro ; Nelson, Bradley J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-813216f479f7640b2c0fb4847f7f2f7f011aebb4b16ebfea265076a3204095cc3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Feedforward neural networks</topic><topic>Force</topic><topic>Magnetic fields</topic><topic>Magnetic flux</topic><topic>Mathematical model</topic><topic>Trajectory</topic><toplevel>online_resources</toplevel><creatorcontrib>Alleyne, Andrew G.</creatorcontrib><creatorcontrib>Schurle, Simone</creatorcontrib><creatorcontrib>Meo, Alessandro</creatorcontrib><creatorcontrib>Nelson, Bradley J.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Alleyne, Andrew G.</au><au>Schurle, Simone</au><au>Meo, Alessandro</au><au>Nelson, Bradley J.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Motion control for magnetic micro-scale manipulation</atitle><btitle>2013 European Control Conference (ECC)</btitle><stitle>ECC</stitle><date>2013-07</date><risdate>2013</risdate><spage>784</spage><epage>790</epage><pages>784-790</pages><eisbn>9783033039629</eisbn><eisbn>3033039626</eisbn><abstract>This work demonstrates performance improvement in motion control under a particular set of machine system constraints. A high performance industrial magnetic micro-manipulation system, the Minimag, is introduced and modeled with both first principles and system identification. The form of the closed loop controller is constrained by operational bounds and the system software, resulting in limits to achievable performance. A model-based motion control enhancement is developed and implemented using tools from Iterative Learning Control. The resulting performance improvements indicate the benefits of motion control even when the closed loop controller is fixed. Experimental results at two different size scales (500 μm and 4.5μm) are given.</abstract><pub>EUCA</pub><doi>10.23919/ECC.2013.6669173</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISBN: 9783033039629 |
ispartof | 2013 European Control Conference (ECC), 2013, p.784-790 |
issn | |
language | eng |
recordid | cdi_ieee_primary_6669173 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Feedforward neural networks Force Magnetic fields Magnetic flux Mathematical model Trajectory |
title | Motion control for magnetic micro-scale manipulation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T03%3A01%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Motion%20control%20for%20magnetic%20micro-scale%20manipulation&rft.btitle=2013%20European%20Control%20Conference%20(ECC)&rft.au=Alleyne,%20Andrew%20G.&rft.date=2013-07&rft.spage=784&rft.epage=790&rft.pages=784-790&rft_id=info:doi/10.23919/ECC.2013.6669173&rft.eisbn=9783033039629&rft.eisbn_list=3033039626&rft_dat=%3Cieee_6IE%3E6669173%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-813216f479f7640b2c0fb4847f7f2f7f011aebb4b16ebfea265076a3204095cc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6669173&rfr_iscdi=true |