Loading…

Tracking control of an electrohydraulic manipulator in the presence of friction

Analysis and estimation of friction and compensation for its effects in the control of an electrohydraulic manipulator is addressed. The specific hydraulic manipulator is an integral part of an automated fish processing machine which has been developed in our laboratory. The analysis reveals that co...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on control systems technology 1998-05, Vol.6 (3), p.401-411
Main Authors: Tafazoli, S., de Silva, C.W., Lawrence, P.D.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Analysis and estimation of friction and compensation for its effects in the control of an electrohydraulic manipulator is addressed. The specific hydraulic manipulator is an integral part of an automated fish processing machine which has been developed in our laboratory. The analysis reveals that considerable static and dynamic friction exists in the system. An available nonlinear observer for Coulomb friction, is modified to simultaneously estimate friction, velocity, and acceleration. A novel observer-based friction compensating control strategy is developed for improved tracking performance of the manipulator. The approach is based on acceleration feedback control. Experimental investigations show that this controller significantly outperforms the conventional PD controller. The general approach presented in this paper, may be applied to compensate for friction in any servomechanism, particularly when the actuator dynamics is not negligible.
ISSN:1063-6536
1558-0865
DOI:10.1109/87.668040