Loading…

Measure the Semantic Similarity of GO Terms Using Aggregate Information Content

The rapid development of gene ontology (GO) and huge amount of biomedical data annotated by GO terms necessitate computation of semantic similarity of GO terms and, in turn, measurement of functional similarity of genes based on their annotations. In this paper we propose a novel and efficient metho...

Full description

Saved in:
Bibliographic Details
Published in:IEEE/ACM transactions on computational biology and bioinformatics 2014-05, Vol.11 (3), p.468-476
Main Authors: Xuebo Song, Lin Li, Srimani, Pradip K., Yu, Philip S., Wang, James Z.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c407t-ee5e45074c618b5dca93dcc7d9bab1382ed54d5c679875d08df64208096801e73
cites cdi_FETCH-LOGICAL-c407t-ee5e45074c618b5dca93dcc7d9bab1382ed54d5c679875d08df64208096801e73
container_end_page 476
container_issue 3
container_start_page 468
container_title IEEE/ACM transactions on computational biology and bioinformatics
container_volume 11
creator Xuebo Song
Lin Li
Srimani, Pradip K.
Yu, Philip S.
Wang, James Z.
description The rapid development of gene ontology (GO) and huge amount of biomedical data annotated by GO terms necessitate computation of semantic similarity of GO terms and, in turn, measurement of functional similarity of genes based on their annotations. In this paper we propose a novel and efficient method to measure the semantic similarity of GO terms. The proposed method addresses the limitations in existing GO term similarity measurement techniques; it computes the semantic content of a GO term by considering the information content of all of its ancestor terms in the graph. The aggregate information content (AIC) of all ancestor terms of a GO term implicitly reflects the GO term's location in the GO graph and also represents how human beings use this GO term and all its ancestor terms to annotate genes. We show that semantic similarity of GO terms obtained by our method closely matches the human perception. Extensive experimental studies show that this novel method also outperforms all existing methods in terms of the correlation with gene expression data. We have developed web services for measuring semantic similarity of GO terms and functional similarity of genes using the proposed AIC method and other popular methods. These web services are available at http://bioinformatics.clemson.edu/G-SESAME.
doi_str_mv 10.1109/TCBB.2013.176
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_6682909</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6682909</ieee_id><sourcerecordid>3443611711</sourcerecordid><originalsourceid>FETCH-LOGICAL-c407t-ee5e45074c618b5dca93dcc7d9bab1382ed54d5c679875d08df64208096801e73</originalsourceid><addsrcrecordid>eNqN0T1v1EAQBuAVApEPKKmQ0Eo0aXzMrPezTE4QIgVdkUtt7a3Hx0ZnO-yui_x7bF1IQQPVjDSPRjN6GfuAsEIE92W7vrpaCcB6hUa_YqeolKmc0_L10ktVKafrE3aW8wOAkA7kW3YidK00oDplmx_k85SIl5_E76j3Q4mB38U-HnyK5YmPHb_e8C2lPvP7HIc9v9zvE-19IX4zdGPqfYnjwNfjUGgo79ibzh8yvX-u5-z-29ft-nt1u7m-WV_eVkGCKRWRIqnAyKDR7lQbvKvbEEzrdn6HtRXUKtmqoI2zRrVg205LARactoBk6nN2cdz7mMZfE-XS9DEHOhz8QOOUGzQ4f29B2H9TbYxDISz8B9VWaIESZ_r5L_owTmmYf25QaaVq54ybVXVUIY05J-qaxxR7n54ahGbJr1nya5b85pP17D89b512PbUv-k9gM_h4BJGIXsbLWQ5c_RudNpt_</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1565539979</pqid></control><display><type>article</type><title>Measure the Semantic Similarity of GO Terms Using Aggregate Information Content</title><source>Association for Computing Machinery:Jisc Collections:ACM OPEN Journals 2023-2025 (reading list)</source><source>IEEE Xplore (Online service)</source><creator>Xuebo Song ; Lin Li ; Srimani, Pradip K. ; Yu, Philip S. ; Wang, James Z.</creator><creatorcontrib>Xuebo Song ; Lin Li ; Srimani, Pradip K. ; Yu, Philip S. ; Wang, James Z.</creatorcontrib><description>The rapid development of gene ontology (GO) and huge amount of biomedical data annotated by GO terms necessitate computation of semantic similarity of GO terms and, in turn, measurement of functional similarity of genes based on their annotations. In this paper we propose a novel and efficient method to measure the semantic similarity of GO terms. The proposed method addresses the limitations in existing GO term similarity measurement techniques; it computes the semantic content of a GO term by considering the information content of all of its ancestor terms in the graph. The aggregate information content (AIC) of all ancestor terms of a GO term implicitly reflects the GO term's location in the GO graph and also represents how human beings use this GO term and all its ancestor terms to annotate genes. We show that semantic similarity of GO terms obtained by our method closely matches the human perception. Extensive experimental studies show that this novel method also outperforms all existing methods in terms of the correlation with gene expression data. We have developed web services for measuring semantic similarity of GO terms and functional similarity of genes using the proposed AIC method and other popular methods. These web services are available at http://bioinformatics.clemson.edu/G-SESAME.</description><identifier>ISSN: 1545-5963</identifier><identifier>EISSN: 1557-9964</identifier><identifier>DOI: 10.1109/TCBB.2013.176</identifier><identifier>PMID: 26356015</identifier><identifier>CODEN: ITCBCY</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Aggregates ; Bioinformatics ; Biology ; Biomedical measurement ; Computation ; Computational Biology - methods ; Equations ; G-SESAME ; Gene expression ; Gene Expression Profiling ; Gene Ontology ; Genes ; GO similarity ; Graphs ; Humans ; Integrated circuits ; Measurement techniques ; Molecular Sequence Annotation ; Ontologies ; Semantics ; Similarity ; Web services</subject><ispartof>IEEE/ACM transactions on computational biology and bioinformatics, 2014-05, Vol.11 (3), p.468-476</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) May 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c407t-ee5e45074c618b5dca93dcc7d9bab1382ed54d5c679875d08df64208096801e73</citedby><cites>FETCH-LOGICAL-c407t-ee5e45074c618b5dca93dcc7d9bab1382ed54d5c679875d08df64208096801e73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6682909$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26356015$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Xuebo Song</creatorcontrib><creatorcontrib>Lin Li</creatorcontrib><creatorcontrib>Srimani, Pradip K.</creatorcontrib><creatorcontrib>Yu, Philip S.</creatorcontrib><creatorcontrib>Wang, James Z.</creatorcontrib><title>Measure the Semantic Similarity of GO Terms Using Aggregate Information Content</title><title>IEEE/ACM transactions on computational biology and bioinformatics</title><addtitle>TCBB</addtitle><addtitle>IEEE/ACM Trans Comput Biol Bioinform</addtitle><description>The rapid development of gene ontology (GO) and huge amount of biomedical data annotated by GO terms necessitate computation of semantic similarity of GO terms and, in turn, measurement of functional similarity of genes based on their annotations. In this paper we propose a novel and efficient method to measure the semantic similarity of GO terms. The proposed method addresses the limitations in existing GO term similarity measurement techniques; it computes the semantic content of a GO term by considering the information content of all of its ancestor terms in the graph. The aggregate information content (AIC) of all ancestor terms of a GO term implicitly reflects the GO term's location in the GO graph and also represents how human beings use this GO term and all its ancestor terms to annotate genes. We show that semantic similarity of GO terms obtained by our method closely matches the human perception. Extensive experimental studies show that this novel method also outperforms all existing methods in terms of the correlation with gene expression data. We have developed web services for measuring semantic similarity of GO terms and functional similarity of genes using the proposed AIC method and other popular methods. These web services are available at http://bioinformatics.clemson.edu/G-SESAME.</description><subject>Aggregates</subject><subject>Bioinformatics</subject><subject>Biology</subject><subject>Biomedical measurement</subject><subject>Computation</subject><subject>Computational Biology - methods</subject><subject>Equations</subject><subject>G-SESAME</subject><subject>Gene expression</subject><subject>Gene Expression Profiling</subject><subject>Gene Ontology</subject><subject>Genes</subject><subject>GO similarity</subject><subject>Graphs</subject><subject>Humans</subject><subject>Integrated circuits</subject><subject>Measurement techniques</subject><subject>Molecular Sequence Annotation</subject><subject>Ontologies</subject><subject>Semantics</subject><subject>Similarity</subject><subject>Web services</subject><issn>1545-5963</issn><issn>1557-9964</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqN0T1v1EAQBuAVApEPKKmQ0Eo0aXzMrPezTE4QIgVdkUtt7a3Hx0ZnO-yui_x7bF1IQQPVjDSPRjN6GfuAsEIE92W7vrpaCcB6hUa_YqeolKmc0_L10ktVKafrE3aW8wOAkA7kW3YidK00oDplmx_k85SIl5_E76j3Q4mB38U-HnyK5YmPHb_e8C2lPvP7HIc9v9zvE-19IX4zdGPqfYnjwNfjUGgo79ibzh8yvX-u5-z-29ft-nt1u7m-WV_eVkGCKRWRIqnAyKDR7lQbvKvbEEzrdn6HtRXUKtmqoI2zRrVg205LARactoBk6nN2cdz7mMZfE-XS9DEHOhz8QOOUGzQ4f29B2H9TbYxDISz8B9VWaIESZ_r5L_owTmmYf25QaaVq54ybVXVUIY05J-qaxxR7n54ahGbJr1nya5b85pP17D89b512PbUv-k9gM_h4BJGIXsbLWQ5c_RudNpt_</recordid><startdate>20140501</startdate><enddate>20140501</enddate><creator>Xuebo Song</creator><creator>Lin Li</creator><creator>Srimani, Pradip K.</creator><creator>Yu, Philip S.</creator><creator>Wang, James Z.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20140501</creationdate><title>Measure the Semantic Similarity of GO Terms Using Aggregate Information Content</title><author>Xuebo Song ; Lin Li ; Srimani, Pradip K. ; Yu, Philip S. ; Wang, James Z.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c407t-ee5e45074c618b5dca93dcc7d9bab1382ed54d5c679875d08df64208096801e73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Aggregates</topic><topic>Bioinformatics</topic><topic>Biology</topic><topic>Biomedical measurement</topic><topic>Computation</topic><topic>Computational Biology - methods</topic><topic>Equations</topic><topic>G-SESAME</topic><topic>Gene expression</topic><topic>Gene Expression Profiling</topic><topic>Gene Ontology</topic><topic>Genes</topic><topic>GO similarity</topic><topic>Graphs</topic><topic>Humans</topic><topic>Integrated circuits</topic><topic>Measurement techniques</topic><topic>Molecular Sequence Annotation</topic><topic>Ontologies</topic><topic>Semantics</topic><topic>Similarity</topic><topic>Web services</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xuebo Song</creatorcontrib><creatorcontrib>Lin Li</creatorcontrib><creatorcontrib>Srimani, Pradip K.</creatorcontrib><creatorcontrib>Yu, Philip S.</creatorcontrib><creatorcontrib>Wang, James Z.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library Online</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE/ACM transactions on computational biology and bioinformatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xuebo Song</au><au>Lin Li</au><au>Srimani, Pradip K.</au><au>Yu, Philip S.</au><au>Wang, James Z.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Measure the Semantic Similarity of GO Terms Using Aggregate Information Content</atitle><jtitle>IEEE/ACM transactions on computational biology and bioinformatics</jtitle><stitle>TCBB</stitle><addtitle>IEEE/ACM Trans Comput Biol Bioinform</addtitle><date>2014-05-01</date><risdate>2014</risdate><volume>11</volume><issue>3</issue><spage>468</spage><epage>476</epage><pages>468-476</pages><issn>1545-5963</issn><eissn>1557-9964</eissn><coden>ITCBCY</coden><abstract>The rapid development of gene ontology (GO) and huge amount of biomedical data annotated by GO terms necessitate computation of semantic similarity of GO terms and, in turn, measurement of functional similarity of genes based on their annotations. In this paper we propose a novel and efficient method to measure the semantic similarity of GO terms. The proposed method addresses the limitations in existing GO term similarity measurement techniques; it computes the semantic content of a GO term by considering the information content of all of its ancestor terms in the graph. The aggregate information content (AIC) of all ancestor terms of a GO term implicitly reflects the GO term's location in the GO graph and also represents how human beings use this GO term and all its ancestor terms to annotate genes. We show that semantic similarity of GO terms obtained by our method closely matches the human perception. Extensive experimental studies show that this novel method also outperforms all existing methods in terms of the correlation with gene expression data. We have developed web services for measuring semantic similarity of GO terms and functional similarity of genes using the proposed AIC method and other popular methods. These web services are available at http://bioinformatics.clemson.edu/G-SESAME.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>26356015</pmid><doi>10.1109/TCBB.2013.176</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1545-5963
ispartof IEEE/ACM transactions on computational biology and bioinformatics, 2014-05, Vol.11 (3), p.468-476
issn 1545-5963
1557-9964
language eng
recordid cdi_ieee_primary_6682909
source Association for Computing Machinery:Jisc Collections:ACM OPEN Journals 2023-2025 (reading list); IEEE Xplore (Online service)
subjects Aggregates
Bioinformatics
Biology
Biomedical measurement
Computation
Computational Biology - methods
Equations
G-SESAME
Gene expression
Gene Expression Profiling
Gene Ontology
Genes
GO similarity
Graphs
Humans
Integrated circuits
Measurement techniques
Molecular Sequence Annotation
Ontologies
Semantics
Similarity
Web services
title Measure the Semantic Similarity of GO Terms Using Aggregate Information Content
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T03%3A43%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Measure%20the%20Semantic%20Similarity%20of%20GO%20Terms%20Using%20Aggregate%20Information%20Content&rft.jtitle=IEEE/ACM%20transactions%20on%20computational%20biology%20and%20bioinformatics&rft.au=Xuebo%20Song&rft.date=2014-05-01&rft.volume=11&rft.issue=3&rft.spage=468&rft.epage=476&rft.pages=468-476&rft.issn=1545-5963&rft.eissn=1557-9964&rft.coden=ITCBCY&rft_id=info:doi/10.1109/TCBB.2013.176&rft_dat=%3Cproquest_ieee_%3E3443611711%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c407t-ee5e45074c618b5dca93dcc7d9bab1382ed54d5c679875d08df64208096801e73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1565539979&rft_id=info:pmid/26356015&rft_ieee_id=6682909&rfr_iscdi=true