Loading…
Measure the Semantic Similarity of GO Terms Using Aggregate Information Content
The rapid development of gene ontology (GO) and huge amount of biomedical data annotated by GO terms necessitate computation of semantic similarity of GO terms and, in turn, measurement of functional similarity of genes based on their annotations. In this paper we propose a novel and efficient metho...
Saved in:
Published in: | IEEE/ACM transactions on computational biology and bioinformatics 2014-05, Vol.11 (3), p.468-476 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c407t-ee5e45074c618b5dca93dcc7d9bab1382ed54d5c679875d08df64208096801e73 |
---|---|
cites | cdi_FETCH-LOGICAL-c407t-ee5e45074c618b5dca93dcc7d9bab1382ed54d5c679875d08df64208096801e73 |
container_end_page | 476 |
container_issue | 3 |
container_start_page | 468 |
container_title | IEEE/ACM transactions on computational biology and bioinformatics |
container_volume | 11 |
creator | Xuebo Song Lin Li Srimani, Pradip K. Yu, Philip S. Wang, James Z. |
description | The rapid development of gene ontology (GO) and huge amount of biomedical data annotated by GO terms necessitate computation of semantic similarity of GO terms and, in turn, measurement of functional similarity of genes based on their annotations. In this paper we propose a novel and efficient method to measure the semantic similarity of GO terms. The proposed method addresses the limitations in existing GO term similarity measurement techniques; it computes the semantic content of a GO term by considering the information content of all of its ancestor terms in the graph. The aggregate information content (AIC) of all ancestor terms of a GO term implicitly reflects the GO term's location in the GO graph and also represents how human beings use this GO term and all its ancestor terms to annotate genes. We show that semantic similarity of GO terms obtained by our method closely matches the human perception. Extensive experimental studies show that this novel method also outperforms all existing methods in terms of the correlation with gene expression data. We have developed web services for measuring semantic similarity of GO terms and functional similarity of genes using the proposed AIC method and other popular methods. These web services are available at http://bioinformatics.clemson.edu/G-SESAME. |
doi_str_mv | 10.1109/TCBB.2013.176 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_6682909</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6682909</ieee_id><sourcerecordid>3443611711</sourcerecordid><originalsourceid>FETCH-LOGICAL-c407t-ee5e45074c618b5dca93dcc7d9bab1382ed54d5c679875d08df64208096801e73</originalsourceid><addsrcrecordid>eNqN0T1v1EAQBuAVApEPKKmQ0Eo0aXzMrPezTE4QIgVdkUtt7a3Hx0ZnO-yui_x7bF1IQQPVjDSPRjN6GfuAsEIE92W7vrpaCcB6hUa_YqeolKmc0_L10ktVKafrE3aW8wOAkA7kW3YidK00oDplmx_k85SIl5_E76j3Q4mB38U-HnyK5YmPHb_e8C2lPvP7HIc9v9zvE-19IX4zdGPqfYnjwNfjUGgo79ibzh8yvX-u5-z-29ft-nt1u7m-WV_eVkGCKRWRIqnAyKDR7lQbvKvbEEzrdn6HtRXUKtmqoI2zRrVg205LARactoBk6nN2cdz7mMZfE-XS9DEHOhz8QOOUGzQ4f29B2H9TbYxDISz8B9VWaIESZ_r5L_owTmmYf25QaaVq54ybVXVUIY05J-qaxxR7n54ahGbJr1nya5b85pP17D89b512PbUv-k9gM_h4BJGIXsbLWQ5c_RudNpt_</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1565539979</pqid></control><display><type>article</type><title>Measure the Semantic Similarity of GO Terms Using Aggregate Information Content</title><source>Association for Computing Machinery:Jisc Collections:ACM OPEN Journals 2023-2025 (reading list)</source><source>IEEE Xplore (Online service)</source><creator>Xuebo Song ; Lin Li ; Srimani, Pradip K. ; Yu, Philip S. ; Wang, James Z.</creator><creatorcontrib>Xuebo Song ; Lin Li ; Srimani, Pradip K. ; Yu, Philip S. ; Wang, James Z.</creatorcontrib><description>The rapid development of gene ontology (GO) and huge amount of biomedical data annotated by GO terms necessitate computation of semantic similarity of GO terms and, in turn, measurement of functional similarity of genes based on their annotations. In this paper we propose a novel and efficient method to measure the semantic similarity of GO terms. The proposed method addresses the limitations in existing GO term similarity measurement techniques; it computes the semantic content of a GO term by considering the information content of all of its ancestor terms in the graph. The aggregate information content (AIC) of all ancestor terms of a GO term implicitly reflects the GO term's location in the GO graph and also represents how human beings use this GO term and all its ancestor terms to annotate genes. We show that semantic similarity of GO terms obtained by our method closely matches the human perception. Extensive experimental studies show that this novel method also outperforms all existing methods in terms of the correlation with gene expression data. We have developed web services for measuring semantic similarity of GO terms and functional similarity of genes using the proposed AIC method and other popular methods. These web services are available at http://bioinformatics.clemson.edu/G-SESAME.</description><identifier>ISSN: 1545-5963</identifier><identifier>EISSN: 1557-9964</identifier><identifier>DOI: 10.1109/TCBB.2013.176</identifier><identifier>PMID: 26356015</identifier><identifier>CODEN: ITCBCY</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Aggregates ; Bioinformatics ; Biology ; Biomedical measurement ; Computation ; Computational Biology - methods ; Equations ; G-SESAME ; Gene expression ; Gene Expression Profiling ; Gene Ontology ; Genes ; GO similarity ; Graphs ; Humans ; Integrated circuits ; Measurement techniques ; Molecular Sequence Annotation ; Ontologies ; Semantics ; Similarity ; Web services</subject><ispartof>IEEE/ACM transactions on computational biology and bioinformatics, 2014-05, Vol.11 (3), p.468-476</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) May 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c407t-ee5e45074c618b5dca93dcc7d9bab1382ed54d5c679875d08df64208096801e73</citedby><cites>FETCH-LOGICAL-c407t-ee5e45074c618b5dca93dcc7d9bab1382ed54d5c679875d08df64208096801e73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6682909$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26356015$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Xuebo Song</creatorcontrib><creatorcontrib>Lin Li</creatorcontrib><creatorcontrib>Srimani, Pradip K.</creatorcontrib><creatorcontrib>Yu, Philip S.</creatorcontrib><creatorcontrib>Wang, James Z.</creatorcontrib><title>Measure the Semantic Similarity of GO Terms Using Aggregate Information Content</title><title>IEEE/ACM transactions on computational biology and bioinformatics</title><addtitle>TCBB</addtitle><addtitle>IEEE/ACM Trans Comput Biol Bioinform</addtitle><description>The rapid development of gene ontology (GO) and huge amount of biomedical data annotated by GO terms necessitate computation of semantic similarity of GO terms and, in turn, measurement of functional similarity of genes based on their annotations. In this paper we propose a novel and efficient method to measure the semantic similarity of GO terms. The proposed method addresses the limitations in existing GO term similarity measurement techniques; it computes the semantic content of a GO term by considering the information content of all of its ancestor terms in the graph. The aggregate information content (AIC) of all ancestor terms of a GO term implicitly reflects the GO term's location in the GO graph and also represents how human beings use this GO term and all its ancestor terms to annotate genes. We show that semantic similarity of GO terms obtained by our method closely matches the human perception. Extensive experimental studies show that this novel method also outperforms all existing methods in terms of the correlation with gene expression data. We have developed web services for measuring semantic similarity of GO terms and functional similarity of genes using the proposed AIC method and other popular methods. These web services are available at http://bioinformatics.clemson.edu/G-SESAME.</description><subject>Aggregates</subject><subject>Bioinformatics</subject><subject>Biology</subject><subject>Biomedical measurement</subject><subject>Computation</subject><subject>Computational Biology - methods</subject><subject>Equations</subject><subject>G-SESAME</subject><subject>Gene expression</subject><subject>Gene Expression Profiling</subject><subject>Gene Ontology</subject><subject>Genes</subject><subject>GO similarity</subject><subject>Graphs</subject><subject>Humans</subject><subject>Integrated circuits</subject><subject>Measurement techniques</subject><subject>Molecular Sequence Annotation</subject><subject>Ontologies</subject><subject>Semantics</subject><subject>Similarity</subject><subject>Web services</subject><issn>1545-5963</issn><issn>1557-9964</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqN0T1v1EAQBuAVApEPKKmQ0Eo0aXzMrPezTE4QIgVdkUtt7a3Hx0ZnO-yui_x7bF1IQQPVjDSPRjN6GfuAsEIE92W7vrpaCcB6hUa_YqeolKmc0_L10ktVKafrE3aW8wOAkA7kW3YidK00oDplmx_k85SIl5_E76j3Q4mB38U-HnyK5YmPHb_e8C2lPvP7HIc9v9zvE-19IX4zdGPqfYnjwNfjUGgo79ibzh8yvX-u5-z-29ft-nt1u7m-WV_eVkGCKRWRIqnAyKDR7lQbvKvbEEzrdn6HtRXUKtmqoI2zRrVg205LARactoBk6nN2cdz7mMZfE-XS9DEHOhz8QOOUGzQ4f29B2H9TbYxDISz8B9VWaIESZ_r5L_owTmmYf25QaaVq54ybVXVUIY05J-qaxxR7n54ahGbJr1nya5b85pP17D89b512PbUv-k9gM_h4BJGIXsbLWQ5c_RudNpt_</recordid><startdate>20140501</startdate><enddate>20140501</enddate><creator>Xuebo Song</creator><creator>Lin Li</creator><creator>Srimani, Pradip K.</creator><creator>Yu, Philip S.</creator><creator>Wang, James Z.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20140501</creationdate><title>Measure the Semantic Similarity of GO Terms Using Aggregate Information Content</title><author>Xuebo Song ; Lin Li ; Srimani, Pradip K. ; Yu, Philip S. ; Wang, James Z.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c407t-ee5e45074c618b5dca93dcc7d9bab1382ed54d5c679875d08df64208096801e73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Aggregates</topic><topic>Bioinformatics</topic><topic>Biology</topic><topic>Biomedical measurement</topic><topic>Computation</topic><topic>Computational Biology - methods</topic><topic>Equations</topic><topic>G-SESAME</topic><topic>Gene expression</topic><topic>Gene Expression Profiling</topic><topic>Gene Ontology</topic><topic>Genes</topic><topic>GO similarity</topic><topic>Graphs</topic><topic>Humans</topic><topic>Integrated circuits</topic><topic>Measurement techniques</topic><topic>Molecular Sequence Annotation</topic><topic>Ontologies</topic><topic>Semantics</topic><topic>Similarity</topic><topic>Web services</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xuebo Song</creatorcontrib><creatorcontrib>Lin Li</creatorcontrib><creatorcontrib>Srimani, Pradip K.</creatorcontrib><creatorcontrib>Yu, Philip S.</creatorcontrib><creatorcontrib>Wang, James Z.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library Online</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE/ACM transactions on computational biology and bioinformatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xuebo Song</au><au>Lin Li</au><au>Srimani, Pradip K.</au><au>Yu, Philip S.</au><au>Wang, James Z.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Measure the Semantic Similarity of GO Terms Using Aggregate Information Content</atitle><jtitle>IEEE/ACM transactions on computational biology and bioinformatics</jtitle><stitle>TCBB</stitle><addtitle>IEEE/ACM Trans Comput Biol Bioinform</addtitle><date>2014-05-01</date><risdate>2014</risdate><volume>11</volume><issue>3</issue><spage>468</spage><epage>476</epage><pages>468-476</pages><issn>1545-5963</issn><eissn>1557-9964</eissn><coden>ITCBCY</coden><abstract>The rapid development of gene ontology (GO) and huge amount of biomedical data annotated by GO terms necessitate computation of semantic similarity of GO terms and, in turn, measurement of functional similarity of genes based on their annotations. In this paper we propose a novel and efficient method to measure the semantic similarity of GO terms. The proposed method addresses the limitations in existing GO term similarity measurement techniques; it computes the semantic content of a GO term by considering the information content of all of its ancestor terms in the graph. The aggregate information content (AIC) of all ancestor terms of a GO term implicitly reflects the GO term's location in the GO graph and also represents how human beings use this GO term and all its ancestor terms to annotate genes. We show that semantic similarity of GO terms obtained by our method closely matches the human perception. Extensive experimental studies show that this novel method also outperforms all existing methods in terms of the correlation with gene expression data. We have developed web services for measuring semantic similarity of GO terms and functional similarity of genes using the proposed AIC method and other popular methods. These web services are available at http://bioinformatics.clemson.edu/G-SESAME.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>26356015</pmid><doi>10.1109/TCBB.2013.176</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1545-5963 |
ispartof | IEEE/ACM transactions on computational biology and bioinformatics, 2014-05, Vol.11 (3), p.468-476 |
issn | 1545-5963 1557-9964 |
language | eng |
recordid | cdi_ieee_primary_6682909 |
source | Association for Computing Machinery:Jisc Collections:ACM OPEN Journals 2023-2025 (reading list); IEEE Xplore (Online service) |
subjects | Aggregates Bioinformatics Biology Biomedical measurement Computation Computational Biology - methods Equations G-SESAME Gene expression Gene Expression Profiling Gene Ontology Genes GO similarity Graphs Humans Integrated circuits Measurement techniques Molecular Sequence Annotation Ontologies Semantics Similarity Web services |
title | Measure the Semantic Similarity of GO Terms Using Aggregate Information Content |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T03%3A43%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Measure%20the%20Semantic%20Similarity%20of%20GO%20Terms%20Using%20Aggregate%20Information%20Content&rft.jtitle=IEEE/ACM%20transactions%20on%20computational%20biology%20and%20bioinformatics&rft.au=Xuebo%20Song&rft.date=2014-05-01&rft.volume=11&rft.issue=3&rft.spage=468&rft.epage=476&rft.pages=468-476&rft.issn=1545-5963&rft.eissn=1557-9964&rft.coden=ITCBCY&rft_id=info:doi/10.1109/TCBB.2013.176&rft_dat=%3Cproquest_ieee_%3E3443611711%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c407t-ee5e45074c618b5dca93dcc7d9bab1382ed54d5c679875d08df64208096801e73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1565539979&rft_id=info:pmid/26356015&rft_ieee_id=6682909&rfr_iscdi=true |